The purpose of the study is to propose a multi-class ensemble classifier using interval modeling dedicated to microarray datasets. An approach of creating the uncertainty intervals for the single prediction values of constituent classifiers and then aggregating the obtained intervals with the use of interval-valued aggregation functions is used. The proposed heterogeneous classification employs Random Forest, Support Vector Machines, and Multilayer Perceptron as component classifiers, utilizing cross-entropy to select the optimal classifier.
View Article and Find Full Text PDF