Publications by authors named "Aleksander Touznik"

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by episodic heterotopic ossification. The median life span of people with this disorder is ∼40 years, and currently, there is no effective treatment available. More than 95% of cases are caused by a recurrent mutation (c.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA), the most common gentic cause of infantile death caused by mutations in the SMN1 gene, presents a unique case in the field of splice modulation therapy, where a gene (or lack of) is responsible for causing the disease phenotype but treatment is not focused around it. Antisense therapy targeting SMN2 which leads to SMN protein expression has been at the forefront of research when it comes to developing a feasible therapy for treating SMA. Recent FDA approval of an antisense-based drug with the 2'-methoxyethoxy (2'MOE) chemistry, called nusinersen (Spinraza), brought antisense drugs into the spotlight.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA), a lethal neurological disease caused by the loss of SMN1, presents a unique case in the field of antisense oligonucleotide (AON)-mediated therapy. While SMN1 mutations are responsible for the disease, AONs targeting intronic splice silencer (ISS) sites in SMN2, including FDA-approved nusinersen, have been shown to restore SMN expression and ameliorate the symptoms. Currently, many studies involving AON therapy for SMA focus on investigating novel AON chemistries targeting SMN2 that may be more effective and less toxic than nusinersen.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive disorder affecting motor neurons, and is currently the most frequent genetic cause of infant mortality. SMA is caused by a loss-of-function mutation in the survival motor neuron 1 (SMN1) gene. SMN2 is an SMN1 paralogue, but cannot compensate for the loss of SMN1 since exon 7 in SMN2 mRNA is excluded (spliced out) due to a single C-to-T nucleotide transition in the exon 7.

View Article and Find Full Text PDF

Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45-55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges.

View Article and Find Full Text PDF

Introduction: Antisense oligonucleotide (AON) therapy is a form of treatment for genetic or infectious diseases using small, synthetic DNA-like molecules called AONs. Recent advances in the development of AONs that show improved stability and increased sequence specificity have led to clinical trials for several neuromuscular diseases. Impressive preclinical and clinical data are published regarding the usage of AONs in exon-skipping and splice modulation strategies to increase dystrophin production in Duchenne muscular dystrophy (DMD) and survival of motor neuron (SMN) production in spinal muscular atrophy (SMA).

View Article and Find Full Text PDF