Chlorophyll was shown to spontaneously form a complex with cadmium, which is incorporated at the central position of the chlorophyll molecule porphyrin ring, where it replaces magnesium. The rate of complex formation depended on the ratio of Cd2+ ions to chlorophyll concentration in the solution. In solutions with chlorophyll concentration of C = 1 × 10 M and Cd concentrations of C = 1 × 10 M, C = 1 × 10 M and C = 9 × 10 M, Cd-Chl complex formation was completed after 200 h, 50 h and 33 h, respectively.
View Article and Find Full Text PDFDalton Trans
September 2014
Four heteroleptic complexes of nickel(ii), cobalt(ii) and zinc(ii), containing a monodentate silanethiolate ligand derived from tris(2,6-diisopropylphenoxy)silanethiol (TDST), were prepared and characterized. Nickel(ii) and cobalt(ii) complexes of the formula M(NH3)2(TDST)2 (M = Ni(ii) complex , M = Co(ii) complex ) were obtained from the respective chlorides. Zinc complexes of the general formula Zn(acac)(TDST)(L), where L = EtOH (complex ) or H2O (complex ), were obtained from zinc acetylacetonate.
View Article and Find Full Text PDFX-ray crystallographic analysis of the title compounds revealed that they assume a folded helical conformation of an approximate C2 symmetry in the solid state. Dithioamide 5b, diselenoamide 5c and monoselenoamide 5d were resolved to enantiomers by inclusion crystallization with optically active diols (TADDOLs). The absolute configuration of the guest molecules in the complexes 5b·6a, 5c·6a and 5d·6a was assigned as P.
View Article and Find Full Text PDFA family of chiral cyclic oxamides was prepared by the condensation of optically active 1,2-diamines with diethyl oxalate. Thionation of the products with Lawesson's reagent afforded a series of chiral 2,3-piperazinedithiones. Molecular geometries of the title compounds were studied with the use of quantum mechanical DFT calculations and were compared to the X-ray crystallographic results.
View Article and Find Full Text PDF