Triacetone triperoxide (TATP) is a highly potent homemade explosive commonly used in terrorist attacks. Its detection poses a significant challenge due to its volatility, and the lack of portability of current sensing techniques. To address this issue, we propose a novel approach based on single-molecule TATP detection in the air using a device where tunneling current in N-terminated carbon-nanotubes nanogaps is measured.
View Article and Find Full Text PDFWe demonstrate transitional dimensionality of discrete diffraction in radial-elliptical photonic lattices. Varying the order, characteristic structure size, and ellipticity of the Mathieu beams used for the photonic lattices generation, we control the shape of discrete diffraction distribution over the combination of the radial direction with the circular, elliptic, or hyperbolic. We also investigate the transition from one-dimensional to two-dimensional discrete diffraction by varying the input probe beam position.
View Article and Find Full Text PDFThe electrical current properties of single-molecule sensing devices based on electronic (tunneling) transport strongly depend on molecule frontier orbital energy, spatial distribution, and position with respect to the electrodes. Here, we present an analysis of the bias dependence of molecule frontier orbital properties at an exemplar case of DNA nucleotides in the gap between H-terminated (3, 3) carbon nanotube (CNT) electrodes and its relation to transversal current rectification. The electronic transport properties of this simple single-molecule device, whose characteristic is the absence of covalent bonding between electrodes and a molecule between them, were obtained using density functional theory and non-equilibrium Green's functions.
View Article and Find Full Text PDFFunctionalization of electrodes is a wide-used strategy in various applications ranging from single-molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non-equilibrium Green's function formalism combined with density functional theory, that single-species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in-gap electrostatic field, induced by species-dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field-effect transistors.
View Article and Find Full Text PDF