Transfer RNAs (tRNA) are decorated during biogenesis with a variety of modifications that modulate their stability, aminoacylation, and decoding potential during translation. The complex landscape of tRNA modification presents significant analysis challenges and to date no single approach enables the simultaneous measurement of important but disparate chemical properties of individual, mature tRNA molecules. We developed a new, integrated approach to analyze the sequence, modification, and aminoacylation state of tRNA molecules in a high throughput nanopore sequencing experiment, leveraging a chemical ligation that embeds the charged amino acid in an adapted tRNA molecule.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
The prebiotic formation of RNA building blocks is well-supported experimentally, yet the emergence of sequence- and structure-specific RNA oligomers is generally attributed to biological selection via Darwinian evolution rather than prebiotic chemical selectivity. In this study, we used deep sequencing to investigate the partitioning of randomized RNA overhangs into ligated products by either splinted ligation or loop-closing ligation. Comprehensive sequence-reactivity profiles revealed that loop-closing ligation preferentially yields hairpin structures with loop sequences UNNG, CNNG, and GNNA (where N represents A, C, G, or U) under competing conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid-specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here, we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs.
View Article and Find Full Text PDFMembraneless coacervate microdroplets have long been proposed as model protocells as they can grow, divide, and concentrate RNA by natural partitioning. However, the rapid exchange of RNA between these compartments, along with their rapid fusion, both within minutes, means that individual droplets would be unable to maintain their separate genetic identities. Hence, Darwinian evolution would not be possible, and the population would be vulnerable to collapse due to the rapid spread of parasitic RNAs.
View Article and Find Full Text PDFMacrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS).
View Article and Find Full Text PDFMultiple RNA strands can interact in solution and assume a large variety of configurations dictated by their potential for base pairing. Although duplex formation from two complementary oligonucleotides has been studied in detail, we still lack a systematic characterization of the behavior of higher order complexes. Here, we focus on the thermodynamic and kinetic effects of an upstream oligonucleotide on the binding of a downstream oligonucleotide to a common template, as we vary the sequence and structure of the contact interface.
View Article and Find Full Text PDFCoded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs.
View Article and Find Full Text PDFHybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy.
View Article and Find Full Text PDFA key challenge in origin-of-life research is the identification of plausible conditions that facilitate multiple steps along the pathway from chemistry to biology. The incompatibility of nucleotide activation chemistry and nonenzymatic template-directed RNA copying has hindered attempts to define such a pathway. Here, we show that adding heteroaromatic small molecules to the reaction network facilitates in situ nucleotide phosphate activation under conditions compatible with RNA copying, allowing both reactions to take place in the same mixture.
View Article and Find Full Text PDFHybridization of short nucleic acid segments (<4 nucleotides) to single-strand templates occurs as a critical intermediate in processes such as non-enzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood due to experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
Aminoacylated transfer RNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA world prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis.
View Article and Find Full Text PDFAminoacylated tRNAs are the substrates for ribosomal protein synthesis in all branches of life, implying an ancient origin for aminoacylation chemistry. In the 1970s, Orgel and colleagues reported potentially prebiotic routes to aminoacylated nucleotides and their RNA-templated condensation to form amino acid-bridged dinucleotides. However, it is unclear whether such reactions would have aided or impeded non-enzymatic RNA replication.
View Article and Find Full Text PDFAchieving multiple cycles of RNA replication within a model protocell would be a critical step toward demonstrating a path from prebiotic chemistry to cellular biology. Any model for early life based on an "RNA world" must account for RNA strand cleavage and hydrolysis, which would degrade primitive genetic information and lead to an accumulation of truncated, phosphate-terminated strands. We show here that cleavage of the phosphodiester backbone is not an end point for RNA replication.
View Article and Find Full Text PDFIn recent efforts, several C20' urea vinblastine analogues were discovered that displayed remarkable potency against vinblastine-sensitive tumor cell lines (IC 50-75 pM), being roughly 100-fold more potent than vinblastine, and that exhibited decreased susceptibility to Pgp efflux-derived resistance in a vinblastine-resistant cell line. Their extraordinary activity indicate that it is not likely or even possible that their cellular functional activity is derived from stoichiometric occupancy of the intracellular tubulin binding sites. Rather, their potency indicates sub-stoichiometric or even catalytic occupancy of candidate binding sites may be sufficient to disrupt tubulin dynamics or microtubule assembly during mitosis.
View Article and Find Full Text PDFThe bending analysis of thick and moderately thick functionally graded square and rectangular plates as well as plates on Winkler⁻Pasternak elastic foundation subjected to sinusoidal transverse load is presented in this paper. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. This paper presents the methodology of the application of the high order shear deformation theory based on the shape functions.
View Article and Find Full Text PDFClinical association studies have implicated high expression of class III β-tubulin as a predictive factor for lower response rates and reduced overall survival in patients receiving tubulin binding drugs, most notably the taxanes. Because of the implications, we examined a series of key vinblastine analogs that emerged from our studies in functional cell growth inhibition assays for their sensitivity to high expression of class III β-tubulin (human non-small cell lung cancer cell line A549 vs taxol-resistant A549-T24). Unlike taxol, vinblastine and a set of key analogs 3-10 did not exhibit any loss in sensitivity toward A549-T24.
View Article and Find Full Text PDFA series of 180 vinblastine 20' amides were prepared in three steps from commercially available starting materials, systematically exploring a typically inaccessible site in the molecule enlisting a powerful functionalization strategy. Clear structure-activity relationships and a structural model were developed in the studies which provided many such 20' amides that exhibit substantial and some even remarkable enhancements in potency, many that exhibit further improvements in activity against a Pgp overexpressing resistant cancer cell line, and an important subset of the vinblastine analogues that display little or no differential in activity against a matched pair of vinblastine sensitive and resistant (Pgp overexpressing) cell lines. The improvements in potency directly correlated with target tubulin binding affinity, and the reduction in differential functional activity against the sensitive and Pgp overexpressing resistant cell lines was found to correlate directly with an impact on Pgp-derived efflux.
View Article and Find Full Text PDFA key series of vinblastine analogs 7-13, which contain modifications to the C20' ethyl group, was prepared with use of two distinct synthetic approaches that provide modifications of the C20' side chain containing linear and cyclized alkyl groups or added functionalized substituents. Their examination revealed the unique nature of the improved properties of the synthetic vinblastine 6, offers insights into the origins of its increased tubulin binding affinity and 10-fold improved cell growth inhibition potency, and served to probe a small hydrophobic pocket anchoring the binding of vinblastine with tubulin. Especially noteworthy were the trends observed with substitution of the terminal carbon of the ethyl group that, with the exception of 9 (R=F vs H, equipotent), led to remarkably substantial reductions in activity (>10-fold): R=F (equipotent with H)>N, CN (10-fold)>Me (50-fold)>Et (100-fold)>OH (inactive).
View Article and Find Full Text PDF