Publications by authors named "Aleksandar Matic"

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.

View Article and Find Full Text PDF

Thermal conductivity enhancement in polymers is vital for advanced applications. This study introduces a novel method to align hexagonal boron nitride (hBN) nanosheets within polydimethylsiloxane (PDMS) matrices using a Halbach array to create a highly uniform magnetic field. This technique achieves significant improvements in thermal conductivity by effectively aligning hBN nanosheets.

View Article and Find Full Text PDF

Transferring and replicating predictive algorithms across healthcare systems constitutes a unique yet crucial challenge that needs to be addressed to enable the widespread adoption of machine learning in healthcare. In this study, we explored the impact of important differences across healthcare systems and the associated Electronic Health Records (EHRs) on machine-learning algorithms to predict mental health crises, up to 28 days in advance. We evaluated both the transferability and replicability of such machine learning models, and for this purpose, we trained six models using features and methods developed on EHR data from the Birmingham and Solihull Mental Health NHS Foundation Trust in the UK.

View Article and Find Full Text PDF

Sleep, an intrinsic aspect of human life, is experienced by individuals differently which may be influenced by personality traits and characteristics. Exploring how these traits influence behaviors and sleep routines could be used to inform more personalized and effective interventions to promote better sleep. Our objective was to summarize the existing literature on the relationship between personality traits and sleep patterns through a systematic review.

View Article and Find Full Text PDF

Lithium-ion batteries (LiBs) with graphite as an anode and lithiated transition metal oxide as a cathode are approaching their specific energy and power theoretical values. To overcome the limitations of LiBs, lithium metal anode with high specific capacity and low negative redox potential is necessary. However, practical application in rechargeable cells is hindered by uncontrolled lithium deposition manifesting, for instance, as Li dendrite growth which can cause formation of dead Li, short circuits and cell failure.

View Article and Find Full Text PDF

An automatic prediction of mental health crises can improve caseload prioritization and enable preventative interventions, improving patient outcomes and reducing costs. We combine structured electronic health records (EHRs) with clinical notes from 59,750 de-identified patients to predict the risk of mental health crisis relapse within the next 28 days. The results suggest that an ensemble machine learning model that relies on structured EHRs and clinical notes when available, and relying solely on structured data when the notes are unavailable, offers superior performance over models trained with either of the two data streams alone.

View Article and Find Full Text PDF

Electrode/electrolyte interfaces are the most important and least understood components of Li-ion and next-generation batteries. An improved understanding of interphases in batteries will undoubtedly lead to breakthroughs in the field. Traditionally, evaluating those interphases involves using surface sensitive and/or imaging techniques.

View Article and Find Full Text PDF

Liquid electrolyte design and modelling is an essential part of the development of improved lithium ion batteries. For mixed organic carbonates (ethylene carbonate (EC) and ethyl-methyl carbonate (EMC) mixtures)-based electrolytes with LiPF as salt, we have compared a polarizable force field with the standard non-polarizable force field with and without charge rescaling to model the structural and dynamic properties. The result of our molecular dynamics simulations shows that both polarizable and non-polarizable force fields have similar structural factors, which are also in agreement with X-ray diffraction experimental results.

View Article and Find Full Text PDF

A correlative, multiscale imaging methodology for visualising and quantifying the morphology of solid dosage forms by combining ptychographic X-ray computed nanotomography (PXCT) and scanning small- and wide-angle X-ray scattering (S/WAXS) is presented. The methodology presents a workflow for multiscale analysis, where structures are characterised from the nanometre to millimetre regime. Here, the method is demonstrated by characterising a hot-melt extruded, partly crystalline, solid dispersion of carbamazepine in ethyl cellulose.

View Article and Find Full Text PDF

A plethora of past studies have highlighted a negative association between phone use and well-being. Recent studies claimed that there is a lack of strong evidence on the deleterious effects of smartphones on our health, and that previous systematic reviews overestimated the negative link between phone use and well-being. In a three-week long in-the-wild study with 352 participants, we captured 15,607 instances of smartphone use in tandem with rich contextual information (activity, location, company) as well as self-reported well-being measures.

View Article and Find Full Text PDF
Article Synopsis
  • Smartpsychotherapy apps are becoming more popular, but we don't know much about how people like to use them or what counts as good engagement.
  • A study looked at data from a trial using a phone app to help people with body dysmorphic disorder for 12 weeks, analyzing how people engaged with the app.
  • They found three types of users (deep, sampler, and light) and discovered that different ways of using the app can still lead to improvement, especially for deep users.
View Article and Find Full Text PDF

Efficient lithium metal stripping and plating operation capable of maintaining electronic and ionic conductivity is crucial to develop safe lithium metal batteries. However, monitoring lithium metal microstructure evolution during cell cycling is challenging. Here, we report the development of an operando synchrotron X-ray tomographic microscopy method capable of probing in real-time the formation, growth, and dissolution of Li microstructures during the cycling of a Li||Cu cell containing a standard non-aqueous liquid electrolyte solution.

View Article and Find Full Text PDF

This trial aimed to determine the possible therapeutic and immunomodulatory effects of vitamin D3 in patients with knee OA. In this open-label clinical trial, symptoms were assessed over 3 months in patients with primary knee OA receiving oral vitamin D3 4000 IU/day. Clinical response was evaluated at baseline and 3 months using WOMAC subscores and VAS.

View Article and Find Full Text PDF

Nanocomposite systems comprised of a poly(ethylene vinyl acetate) (EVA) matrix and carbon black (CB) or graphene nanoplatelets (GNPs) were used to investigate conductivity and crystallisation dynamics using a commercially relevant melt-state mixing process. Crystallisation kinetics and morphology, as investigated by DSC and SEM, turn out to depend on the interplay of (i) the interphase interactions between matrix and filler, and (ii) the degree of filler agglomeration. For the GNP-based systems, an almost constant conductivity value was observed for all compositions upon cooling, something not observed for the CB-based compositions.

View Article and Find Full Text PDF

Digital mental health applications promise scalable and cost-effective solutions to mitigate the gap between the demand and supply of mental healthcare services. However, very little attention is paid on differential impact and potential discrimination in digital mental health services with respect to different sensitive user groups (e.g.

View Article and Find Full Text PDF

The beneficial effects of HBO in inflammatory processes make it an attractive type of treatment for chronic arthritis. In addition, the effects of combination therapy based on adipose stem cells and HBO on OA progression have not been fully investigated. The current study explored the efficacy of intra-articular injection of allogeneic adipose-derived mesenchymal stem cells (ADMSCs) combined with hyperbaric oxygenation treatment (HBO) in a rat osteoarthritis (OA) model.

View Article and Find Full Text PDF

The timely identification of patients who are at risk of a mental health crisis can lead to improved outcomes and to the mitigation of burdens and costs. However, the high prevalence of mental health problems means that the manual review of complex patient records to make proactive care decisions is not feasible in practice. Therefore, we developed a machine learning model that uses electronic health records to continuously monitor patients for risk of a mental health crisis over a period of 28 days.

View Article and Find Full Text PDF

This study aimed to elucidate how the glass transition temperature and water interactions in cellulose esters are affected by the structures of their side chains. Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate with three fractions of butyrates, all having the same total degree of substitution, were selected, and hot-melt pressed. The degree of substitution, structural properties, and water interactions were determined.

View Article and Find Full Text PDF

It is widely assumed that the longer we spend in happier activities the happier we will be. In an intensive study of momentary happiness, we show that, in fact, longer time spent in happier activities does not lead to higher levels of reported happiness overall. This finding is replicated with different samples (student and diverse, multi-national panel), measures and methods of analysis.

View Article and Find Full Text PDF

Semi-liquid catholyte Lithium-Sulfur (Li-S) cells have shown to be a promising path to realize high energy density energy storage devices. In general, Li-S cells rely on the conversion of elemental sulfur to soluble polysulfide species. In the case of catholyte cells, the active material is added through polysulfide species dissolved in the electrolyte.

View Article and Find Full Text PDF

High salt concentration has been shown to induce increased electrochemical stability in organic solvent-based electrolytes. Accompanying the change in bulk properties is a structural ordering on mesoscopic length scales and changes in the ion transport mechanism have also been suggested. Here we investigate the local structure and dynamics in highly concentrated acetonitrile electrolytes as a function of salt concentration.

View Article and Find Full Text PDF

Sodium, in contrast to other metals, cannot intercalate in graphite, hindering the use of this cheap, abundant element in rechargeable batteries. Here, we report a nanometric graphite-like anode for Na storage, formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The asymmetric functionalization allows reversible intercalation of Na, as monitored by operando Raman spectroelectrochemistry and visualized by imaging ellipsometry.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries are considered one of the most promising energy storage technologies, possibly replacing the state-of-the-art lithium-ion (Li-ion) batteries owing to their high energy density, low cost, and eco-compatibility. However, the migration of high-order lithium polysulfides (LiPs) to the lithium surface and the sluggish electrochemical kinetics pose challenges to their commercialization. The interactions between the cathode and LiPs can be enhanced by the doping of the carbon host with heteroatoms, however with relatively low doping content (<10%) in the bulk of the carbon, which can hardly interact with LiPs at the host surface.

View Article and Find Full Text PDF

Due to an ultrahigh theoretical specific capacity of 3860 mAh g, lithium (Li) is regarded as the ultimate anode for high-energy-density batteries. However, the practical application of Li metal anode is hindered by safety concerns and low Coulombic efficiency both of which are resulted fromunavoidable dendrite growth during electrodeposition. This study focuses on a critical parameter for electrodeposition, the exchange current density, which has attracted only little attention in research on Li metal batteries.

View Article and Find Full Text PDF

A detailed understanding of the local dynamics in ionic liquids remains an important aspect in the design of new ionic liquids as advanced functional fluids. Here, we use small-angle X-ray scattering and quasi-elastic neutron spectroscopy to investigate the local structure and dynamics in a model ionic liquid as a function of temperature and pressure, with a particular focus on state points (,) where the macroscopic dynamics, i.e.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Aleksandar Matic"

  • - Aleksandar Matic's recent research spans interdisciplinary applications of machine learning in healthcare, particularly focusing on the transferability of algorithms for predicting mental health crises across different healthcare systems and enhancing predictive accuracy by integrating clinical notes with structured electronic health records.
  • - Matic has conducted a systematic review examining how personality traits, specifically the Big Five, influence sleep patterns, which potentially informs personalized interventions for better sleep quality.
  • - His work in battery technology involves advancing the understanding of lithium-ion batteries, particularly through the analysis of interphases and microstructure evolution of lithium metal, emphasizing the use of advanced imaging techniques for real-time observation during battery operation.