Background: Cerebral small vessel disease (cSVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although risk factors for cSVD have been identified, little is known about the biological processes and molecular mediators that influence cSVD development and progression.
Methods: Within the Atherosclerosis Risk in Communities (ARIC) study, we used SomaScan Multiplexed Proteomic technology to relate 4,877 plasma proteins to concurrently measured MRI‐defined cSVD characteristics, including WMHs, CMHs, and lacunar infarcts, in late‐life (n=1508; mean age: 76).
Cerebral small vessel disease (SVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although conditions such as hypertension are known to contribute to SVD, little is known about the diverse set of subclinical biological processes and molecular mediators that may also influence the development and progression of SVD. To better understand the mechanisms underlying SVD and to identify novel SVD biomarkers, we used a large-scale proteomic platform to relate 4,877 plasma proteins to MRI-defined SVD characteristics within 1,508 participants of the Atherosclerosis Risk in Communities (ARIC) Study cohort.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed.
View Article and Find Full Text PDFA diverse set of biological processes have been implicated in the pathophysiology of Alzheimer's disease (AD) and related dementias. However, there is limited understanding of the peripheral biological mechanisms relevant in the earliest phases of the disease. Here, we used a large-scale proteomics platform to examine the association of 4877 plasma proteins with 25-year dementia risk in 10,981 middle-aged adults.
View Article and Find Full Text PDFImportance: Metabolomics reflect the net effect of genetic and environmental influences and thus provide a comprehensive approach to evaluating the pathogenesis of complex diseases, such as depression.
Objective: To identify the metabolic signatures of major depressive disorder (MDD), elucidate the direction of associations using mendelian randomization, and evaluate the interplay of the human gut microbiome and metabolome in the development of MDD.
Design, Setting And Participants: This cohort study used data from participants in the UK Biobank cohort (n = 500 000; aged 37 to 73 years; recruited from 2006 to 2010) whose blood was profiled for metabolomics.
Introduction: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD.
Methods: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR).
Background And Objective: Blood-based biomarkers represent a promising approach to help identify early Alzheimer's disease (AD). Previous research has applied traditional machine learning (ML) to analyze plasma omics data and search for potential biomarkers, but the most modern ML methods based on deep learning has however been scarcely explored. In the current study, we aim to harness the power of state-of-the-art deep learning neural networks (NNs) to identify plasma proteins that predict amyloid, tau, and neurodegeneration (AT[N]) pathologies in AD.
View Article and Find Full Text PDFIntroduction: Type 2 diabetes is a risk factor for dementia and Parkinson's disease (PD). Drug treatments for diabetes, such as metformin, could be used as novel treatments for these neurological conditions. Using electronic health records from the USA (OPTUM EHR) we aimed to assess the association of metformin with all-cause dementia, dementia subtypes and PD compared with sulfonylureas.
View Article and Find Full Text PDFIntroduction: The levels of many blood proteins are associated with Alzheimer's disease (AD) or its pathological hallmarks. Elucidating the molecular factors that control circulating levels of these proteins may help to identify proteins associated with disease risk mechanisms.
Methods: Genome-wide and epigenome-wide studies (n ≤1064) were performed on plasma levels of 282 AD-associated proteins, identified by a structured literature review.
Background: Hypertension is a well-established risk factor for cognitive impairment, brain atrophy, and dementia. However, the relationship of other types of hypertensions, such as isolated hypertension on brain health and its comparison to systolic-diastolic hypertension (where systolic and diastolic measures are high), is still relatively unknown. Due to its increased prevalence, it is important to investigate the impact of isolated hypertension to help understand its potential impact on cognitive decline and future dementia risk.
View Article and Find Full Text PDFUK Biobank (UKB) is widely employed to investigate mental health disorders and related exposures; however, its applicability and relevance in a clinical setting and the assumptions required have not been sufficiently and systematically investigated. Here, we present the first validation study using secondary care mental health data with linkage to UKB from Oxford - Clinical Record Interactive Search (CRIS) focusing on comparison of demographic information, diagnostic outcome, medication record and cognitive test results, with missing data and the implied bias from both resources depicted. We applied a natural language processing model to extract information embedded in unstructured text from clinical notes and attachments.
View Article and Find Full Text PDFBackground: Mid-life hypertension is an established risk factor for cognitive impairment and dementia and related to greater brain atrophy and poorer cognitive performance. Previous studies often have small sample sizes from older populations that lack utilizing multiple measures to define hypertension such as blood pressure, self-report information, and medication use; furthermore, the impact of the duration of hypertension is less extensively studied.
Objective: To investigate the relationship between hypertension defined using multiple measures and length of hypertension with brain measure and cognition.
Introduction: This study aims to first discover plasma proteomic biomarkers relating to neurodegeneration (N) and vascular (V) damage in cognitively normal individuals and second to discover proteins mediating sex-related difference in N and V pathology.
Methods: Five thousand and thirty-two plasma proteins were measured in 1061 cognitively normal individuals (628 females and 433 males), nearly 90% of whom had magnetic resonance imaging measures of hippocampal volume (as N) and white matter hyperintensities (as V).
Results: Differential protein expression analysis and co-expression network analysis revealed different proteins and modules associated with N and V, respectively.
: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts.
View Article and Find Full Text PDFIntroduction: This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis.
Methods: Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively.
Results: Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable.
Background: Findings from randomized controlled trials have yielded conflicting results on the association between blood pressure (BP) and dementia traits. We tested the hypothesis that a causal relationship exists between systolic BP (SBP) and/or diastolic BP (DBP) and risk of Alzheimer's disease (AD).
Methods: We performed a generalized summary Mendelian randomization (GSMR) analysis using summary statistics of a genome-wide association study meta-analysis of 299,024 individuals of SBP or DBP as exposure variables against three different outcomes: 1) AD diagnosis (International Genomics of Alzheimer's Project), 2) maternal family history of AD (UK Biobank), and 3) paternal family history of AD (UK Biobank).
Objectives: Patients in an ICU are particularly vulnerable to sepsis. It is therefore important to detect its onset as early as possible. This study focuses on the development and validation of a new signature-based regression model, augmented with a particular choice of the handcrafted features, to identify a patient's risk of sepsis based on physiologic data streams.
View Article and Find Full Text PDFBackground: Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.
Objective: We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.
We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue.
View Article and Find Full Text PDFBackground: Intimate partner violence (IPV) against women is associated with a wide range of adverse outcomes. Although mental disorders have been linked to an increased risk of perpetrating IPV against women, the direction and magnitude of the association remain uncertain. In a longitudinal design, we examined the association between mental disorders and IPV perpetrated by men towards women in a population-based sample and used sibling comparisons to control for factors shared by siblings, such as genetic and early family environmental factors.
View Article and Find Full Text PDFIntroduction: Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins.
Methods: 4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid.
As genome-wide association studies (GWAS) have grown in size, the number of genetic variants that have been associated per disease has correspondingly increased. Despite this increase in the number of single-nucleotide polymorphisms (SNPs) identified per disease, their biological interpretation has in many cases remained elusive. To address this, we have combined GWAS results with orthogonal sources of evidence, namely the current knowledge of molecular pathways; real-world clinical data from six million patients; RNA expression across tissues from Alzheimer's disease (AD) patients, and purpose-built rodent models for experimental validation.
View Article and Find Full Text PDF