Publications by authors named "Alejandro V Cano"

AbstractThe joint distribution of selection coefficients and mutation rates is a key determinant of the genetic architecture of molecular adaptation. Three different distributions are of immediate interest: (1) the "nominal" distribution of possible changes, prior to mutation or selection; (2) the "de novo" distribution of realized mutations; and (3) the "fixed" distribution of selectively established mutations. Here, we formally characterize the relationships between these joint distributions under the strong-selection/weak-mutation (SSWM) regime.

View Article and Find Full Text PDF

Predicting evolutionary outcomes is an important research goal in a diversity of contexts. The focus of evolutionary forecasting is usually on adaptive processes, and efforts to improve prediction typically focus on selection. However, adaptive processes often rely on new mutations, which can be strongly influenced by predictable biases in mutation.

View Article and Find Full Text PDF

Evolutionary adaptation often occurs by the fixation of beneficial mutations. This mode of adaptation can be characterized quantitatively by a spectrum of adaptive substitutions, i.e.

View Article and Find Full Text PDF

Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes.

View Article and Find Full Text PDF

Mutation is a biased stochastic process, with some types of mutations occurring more frequently than others. Previous work has used synthetic genotype-phenotype landscapes to study how such mutation bias affects adaptive evolution. Here, we consider 746 empirical genotype-phenotype landscapes, each of which describes the binding affinity of target DNA sequences to a transcription factor, to study the influence of mutation bias on adaptive evolution of increased binding affinity.

View Article and Find Full Text PDF