In the gastric pathogen Helicobacter pylori, post-transcriptional regulation relies strongly on the activity of the essential ribonuclease RNase J. Here, we elucidated the crystal and cryo-EM structures of RNase J and determined that it assembles into dimers and tetramers in vitro. We found that RNase J extracted from H.
View Article and Find Full Text PDFMotivation: With the steadily increasing abundance of omics data produced all over the world under vastly different experimental conditions residing in public databases, a crucial step in many data-driven bioinformatics applications is that of data integration. The challenge of batch-effect removal for entire databases lies in the large number of batches and biological variation, which can result in design matrix singularity. This problem can currently not be solved satisfactorily by any common batch-correction algorithm.
View Article and Find Full Text PDFis a Gram-negative bacterial pathogen that colonizes the stomach of about half of the human population worldwide. Infection by is generally acquired during childhood and this bacterium rapidly establishes a persistent colonization. causes chronic gastritis that, in some cases, progresses into peptic ulcer disease or adenocarcinoma that is responsible for about 800,000 deaths in the world every year.
View Article and Find Full Text PDFRibonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed.
View Article and Find Full Text PDFToxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood.
View Article and Find Full Text PDFPosttranscriptional regulation is a major level of gene expression control in any cell. In bacteria, multiprotein machines called RNA degradosomes are central for RNA processing and degradation, and some were reported to be compartmentalized inside these organelleless cells. The minimal RNA degradosome of the important gastric pathogen is composed of the essential ribonuclease RNase J and RhpA, its sole DEAD box RNA helicase, and plays a major role in the regulation of mRNA decay and adaptation to gastric colonization.
View Article and Find Full Text PDFBacterial RNA degradosomes are multienzyme molecular machines that act as hubs for post-transcriptional regulation of gene expression. The ribonuclease activities of these complexes require tight regulation, as they are usually essential for cell survival while potentially destructive. Recent studies have unveiled a wide variety of regulatory mechanisms including autoregulation, post-translational modifications, and protein compartmentalization.
View Article and Find Full Text PDF