Publications by authors named "Alejandro Revuelto"

N-methylation of the triazole moiety present in our recently described triazole-phenyl-thiazole dimerization disruptors of Leishmania infantum trypanothione disulfide reductase (LiTryR) led to a new class of potent inhibitors that target different binding sites on this enzyme. Subtle structural changes among representative library members modified their mechanism of action, switching from models of classical competitive inhibition to time-dependent mixed noncompetitive inhibition. X-ray crystallography and molecular modeling results provided a rationale for this distinct behavior.

View Article and Find Full Text PDF

Redox homeostasis in trypanosomatids is based on the low-molecular-weight trypanothione, an essential dithiol molecule that is synthetized by trypanothione synthetase (TryS) and maintained in its reduced state by trypanothione disulfide reductase (TryR). The fact that both enzymes are indispensable for parasite survival and absent in the mammalian hosts makes them ideal drug targets against leishmaniasis. Although many efforts have been directed to developing TryR inhibitors, much less attention has been focused on TryS.

View Article and Find Full Text PDF

Trypanothione disulfide reductase (TryR) is an essential homodimeric enzyme of trypanosomatid parasites that has been validated as a drug target to fight human infections. Using peptides and peptidomimetics, we previously obtained proof of concept that disrupting protein-protein interactions at the dimer interface of TryR TryR offered an innovative and so far unexploited opportunity for the development of novel antileishmanial agents. Now, we show that linking our previous peptide prototype to selected hydrophobic moieties provides a novel series of small-molecule-peptide conjugates that behave as good inhibitors of both TryR activity and dimerization.

View Article and Find Full Text PDF

Inhibition of trypanothione disulfide reductase (TryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of TryR.

View Article and Find Full Text PDF

Disruption of protein-protein interactions of essential oligomeric enzymes by small molecules represents a significant challenge. We recently reported some linear and cyclic peptides derived from an α-helical region present in the homodimeric interface of Leishmania infantum trypanothione reductase ( Li-TryR) that showed potent effects on both dimerization and redox activity of this essential enzyme. Here, we describe our first steps toward the design of nonpeptidic small-molecule Li-TryR dimerization disruptors using a proteomimetic approach.

View Article and Find Full Text PDF

4H-Pyranylidene-containing push-pull chromophores built around a bithiophene (BT) π relay or a rigidified thiophene-based unit, namely cyclopenta[1,2-b:3,4-b']dithiophene (CPDT) or dithieno[3,2-b:2',3'-d]pyrrole (DTP), have been synthesized and characterized. The effect of these different relays on the polarization and the second-order nonlinear optical (NLO) properties has been studied. For the sake of comparison, the corresponding reported dithieno[3,2-b:2',3'-d]thiophene (DTT) derivatives have also been included in the discussion.

View Article and Find Full Text PDF