The potential of using image-guided photodynamic therapy (ig-PDT) for cancer, especially with highly biocompatible fluorescent agents free of heavy atoms, is well recognized. This is due to key advantages related to minimizing adverse side effects associated with standard cancer chemotherapy. However, this theragnostic approach is strongly limited by the lack of synthetically-accessible and easily-modulable chemical scaffolds, enabling the rapid design and construction of advanced agents for clinical ig-PDT.
View Article and Find Full Text PDFHeavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim.
View Article and Find Full Text PDFThe search for efficient heavy atom free photosensitizers (PSs) for photodynamic therapy (PDT) is a very active field. We describe herein a simple and easily accessible molecular design based on the attachment of an enamine group as an electron-donor moiety at the position of the BODIPY core with different alkylation patterns. The effect of the alkylation degree and solvent polarity on the photophysical properties in terms of splitting absorption bands, fluorescence efficiencies and singlet oxygen production is analyzed in depth experimentally using spectroscopic techniques, including femtosecond and nanosecond transient absorption (fs- and ns-TA) and using computational simulations based on time-dependent density functional theory.
View Article and Find Full Text PDFWe have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY-BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
View Article and Find Full Text PDFPhasing agents enabling protein structure determination at 1 Å, the wavelength corresponding to the maximum intensity of the synchrotron facilities applied in biomacromolecular crystallography, have been long sought-after. The first phasing agent designed for solving native protein structures at 0.97934 Å is described herein.
View Article and Find Full Text PDFBODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface.
View Article and Find Full Text PDFHerein we detail a protocol to design dyads and triads based solely on BODIPY dyes as halogen-free singlet oxygen photosensitizers or energy transfer molecular cassettes. The conducted photonic characterization reveals the key role of the BODIPY-BODIPY linkage to finely modulate the balance between the triplet state population and fluorescence decay.
View Article and Find Full Text PDFWe report the design of a new model based on a small neutral 8-aryl-3-formylBODIPY and its suitability to develop privileged highly bright and photostable fluorescent probes for selective and, more importantly, covalent staining of mitochondria.
View Article and Find Full Text PDFThe search for long-lived red and NIR fluorescent dyes is challenging and hitherto scarcely reported. Herein, the viability of aza-BODIPY skeleton as a promising system for achieving thermal activated delayed fluorescent (TADF) probes emitting in this target region is demonstrated for the first time. The synthetic versatility of this scaffold allows the design of energy and charge transfer cassettes modulating the stereoelectronic properties of the energy donors, the spacer moieties and the linkage positions.
View Article and Find Full Text PDFThis minireview is devoted to honoring the memory of Dr. Thomas Dougherty, a pioneer of modern photodynamic therapy (PDT). It compiles the most important inputs made by our research group since 2012 in the development of new photosensitizers based on BODIPY chromophore which, thanks to the rich BODIPY chemistry, allows a finely tuned design of the photophysical properties of this family of dyes to serve as efficient photosensitizers for the generation of singlet oxygen.
View Article and Find Full Text PDFEndowing BODIPY PDT agents with the ability to probe lipid droplets is demonstrated to boost their phototoxicity, allowing the efficient use of highly fluorescent dyes (poor ROS sensitizers) as phototoxic agents. Conversely, this fact opens the way to the development of highly bright ROS photosensitizers for performing photodynamic theragnosis (fluorescence bioimaging and photodynamic therapy) from a single simple agent. On the other hand, the noticeable capability of some of the reported dyes to probe lipid droplets in different cell lines under different conditions reveals their use as privileged probes for advancing the study of interesting lipid droplets by fluorescence microscopy.
View Article and Find Full Text PDFAn efficient synthesis of formylBODIPYs has been established based on an oxidation with PCC of 3-methylBODIPYs. It has been demonstrated that this reagent can oxidize methyl groups at such position of the BODIPY core, regardless of its substitution pattern. Moreover, through this procedure it is possible to synthesize 8-aryl-3,5-diformylBODIPYs, which are otherwise difficult to obtain.
View Article and Find Full Text PDFA modified Stöber method is used to synthesize spherical core-shell silica nanoparticles (NPs) with an external surface functionalized by amino groups and with an average size around 50 nm. Fluorescent dyes and photosensitizers of singlet oxygen were fixed, either separately or conjointly, respectively in the core or in the shell. Rhodamines were encapsulated in the core with relatively high fluorescence quantum yields (Φ ≥ 0.
View Article and Find Full Text PDFThe synthesis, photophysical characterization, and modeling of a new library of halogen-free photosensitizers (PS) based on orthogonal boron dipyrromethene (BODIPY) dimers are reported. Herein we establish key structural factors in order to enhance singlet oxygen generation by judiciously choosing the substitution patterns according to key electronic effects and synthetic accessibility factors. The photosensitization mechanism of orthogonal BODIPY dimers is demonstrated to be strongly related to their intrinsic intramolecular charge transfer (ICT) character through the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) mechanism.
View Article and Find Full Text PDF