Publications by authors named "Alejandro Ocampo"

Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process.

View Article and Find Full Text PDF

Although most drugs currently approved are meant to treat specific diseases or symptoms, it has been hypothesized that some might bear a beneficial effect on lifespan in healthy older individuals, outside of their specific disease indication. Such drugs include, among others, metformin, SGLT2 inhibitors and rapamycin. Since 2006, the UK biobank has recorded prescription medication and mortality data for over 500'000 participants, aged between 40 and 70 years old.

View Article and Find Full Text PDF
Article Synopsis
  • Aging is the main cause of many diseases and is a big challenge for society because we don't fully understand how it works.
  • A specific change in how our genes are controlled, called H3K9me3, might play a big role in aging, but we don't know exactly how yet.
  • Research using special mice showed that losing H3K9me3 leads to faster aging, less lifespan, and health problems, suggesting that fixing epigenetic changes could help slow down aging.
View Article and Find Full Text PDF

Unlike aged somatic cells, which exhibit a decline in molecular fidelity and eventually reach a state of replicative senescence, pluripotent stem cells can indefinitely replenish themselves while retaining full homeostatic capacity. The conferment of beneficial-pluripotency related traits via partial cellular reprogramming in vivo partial reprogramming significantly extends lifespan and restores aging phenotypes in mouse models. Although the phases of cellular reprogramming are well characterized, details of the rejuvenation processes are poorly defined.

View Article and Find Full Text PDF

Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking.

View Article and Find Full Text PDF

Several premature aging mouse models have been developed to study aging and identify interventions that can delay age-related diseases. Yet, it is still unclear whether these models truly recapitulate natural aging. Here, we analyzed DNA methylation in multiple tissues of four previously reported mouse models of premature aging (Ercc1, LAKI, Polg, and Xpg).

View Article and Find Full Text PDF

Aging and age-associated disease are a major medical and societal burden in need of effective treatments. Cellular reprogramming is a biological process capable of modulating cell fate and cellular age. Harnessing the rejuvenating benefits without altering cell identity via partial cellular reprogramming has emerged as a novel translational strategy with therapeutic potential and strong commercial interests.

View Article and Find Full Text PDF

The induction of cellular reprogramming via expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) can drive dedifferentiation of somatic cells and ameliorate age-associated phenotypes in multiple tissues and organs. However, the benefits of long-term in vivo reprogramming are limited by detrimental side-effects. Here, using complementary genetic approaches, we demonstrated that continuous induction of the reprogramming factors in vivo leads to hepatic and intestinal dysfunction resulting in decreased body weight and contributing to premature death (within 1 week).

View Article and Find Full Text PDF

The establishment of aging clocks highlighted the strong link between changes in DNA methylation and aging. Yet, it is not known if other epigenetic features could be used to predict age accurately. Furthermore, previous studies have observed a lack of effect of age-related changes in DNA methylation on gene expression, putting the interpretability of DNA methylation-based aging clocks into question.

View Article and Find Full Text PDF

Constitutive heterochromatin is responsible for genome repression of DNA enriched in repetitive sequences, telomeres, and centromeres. During physiological and pathological premature aging, heterochromatin homeostasis is profoundly compromised. Here, we showed that () RNA accumulation was an early event in both typical and atypical human progeroid syndromes.

View Article and Find Full Text PDF

Cells can be rejuvenated and biological clocks reset using cellular reprogramming. A growing number of companies now aim to use cellular reprogramming to develop therapies for rejuvenating human beings. Can the 'young' science of rejuvenation, currently mostly based on in vitro studies, drive a new biotech field toward clinical applications?

View Article and Find Full Text PDF

Cannabis consumption has been increasing worldwide among pregnant women. Due to the negative effects of prenatal cannabis exposure, it is necessary to develop an objective, sensitive, and specific method to determine cannabinoids use during pregnancy. In this study, we compared four different biological samples, maternal hair, meconium, umbilical cord, and placenta, for the detection of in utero cannabis exposure.

View Article and Find Full Text PDF

Objective: Pharmacoresistance and the lack of disease-modifying actions of current antiseizure drugs persist as major challenges in the treatment of epilepsy. Experimental models of chemoconvulsant-induced status epilepticus remain the models of choice to discover potential antiepileptogenic drugs, but doubts remain as to the extent to which they model human pathophysiology. The aim of the present study was to compare the molecular landscape of the intra-amygdala kainic acid model of status epilepticus in mice with findings in resected brain tissue from patients with drug-resistant temporal lobe epilepsy (TLE).

View Article and Find Full Text PDF

Temporal lobe epilepsy is the most common and refractory form of epilepsy in adults. Gene expression within affected structures such as the hippocampus displays extensive dysregulation and is implicated as a central pathomechanism. Post-transcriptional mechanisms are increasingly recognized as determinants of the gene expression landscape, but key mechanisms remain unexplored.

View Article and Find Full Text PDF

In vivo genome editing represents a powerful strategy for both understanding basic biology and treating inherited diseases. However, it remains a challenge to develop universal and efficient in vivo genome-editing tools for tissues that comprise diverse cell types in either a dividing or non-dividing state. Here, we describe a versatile in vivo gene knock-in methodology that enables the targeting of a broad range of mutations and cell types through the insertion of a minigene at an intron of the target gene locus using an intracellularly linearized single homology arm donor.

View Article and Find Full Text PDF

Identification of the precise molecular pathways involved in oncogene-induced transformation may help us gain a better understanding of tumor initiation and promotion. Here, we demonstrate that SOX2 foregut epithelial cells are prone to oncogenic transformation upon mutagenic insults, such as Kras and p53 deletion. GFP-based lineage-tracing experiments indicate that SOX2 cells are the cells-of-origin of esophagus and stomach hyperplasia.

View Article and Find Full Text PDF

Large cutaneous ulcers are, in severe cases, life threatening. As the global population ages, non-healing ulcers are becoming increasingly common. Treatment currently requires the transplantation of pre-existing epithelial components, such as skin grafts, or therapy using cultured cells.

View Article and Find Full Text PDF

Stem cell aging and exhaustion are considered important drivers of organismal aging. Age-associated declines in stem cell function are characterized by metabolic and epigenetic changes. Understanding the mechanisms underlying these changes will likely reveal novel therapeutic targets for ameliorating age-associated phenotypes and for prolonging human healthspan.

View Article and Find Full Text PDF

Aging and circadian rhythms have been linked for decades, but their molecular interplay has remained obscure. Sato et al. and Solanas et al.

View Article and Find Full Text PDF

Defects in mitochondrial biogenesis and function are common in many neurodegenerative disorders, including Huntington's disease (HD). We have previously shown that in yeast models of HD, enhancement of mitochondrial biogenesis through overexpression of Hap4, the catalytic subunit of the transcriptional complex that regulates mitochondrial gene expression, alleviates the growth arrest induced by expanded polyglutamine (polyQ) tract peptides in rapidly dividing cells. However, the mechanism through which overexpression exerts this protection remains unclear.

View Article and Find Full Text PDF

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans.

View Article and Find Full Text PDF

Aging is the major risk factor for many human diseases. In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in vivo. Here, we report that partial reprogramming by short-term cyclic expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) ameliorates cellular and physiological hallmarks of aging and prolongs lifespan in a mouse model of premature aging.

View Article and Find Full Text PDF

The discovery of induced pluripotent stem cells (iPSCs) a decade ago, which we are celebrating in this issue of Cell, represents a landmark discovery in biomedical research. Together with somatic cell nuclear transfer, iPSC generation reveals the remarkable plasticity associated with differentiated cells and provides an unprecedented means for modeling diseases using patient samples. In addition to transcriptional and epigenetic remodeling, cellular reprogramming to pluripotency is also accompanied by a rewiring of metabolic pathways, which ultimately leads to changes in cell identities.

View Article and Find Full Text PDF

Aging can be defined as the progressive decline in the ability of a cell or organism to resist stress and disease. Recent advances in cellular reprogramming technologies have enabled detailed analyses of the aging process, often involving cell types derived from aged individuals, or patients with premature aging syndromes. In this review we discuss how cellular reprogramming allows the recapitulation of aging in a dish, describing novel experimental approaches to investigate the aging process.

View Article and Find Full Text PDF