Publications by authors named "Alejandro Mendoza-Coto"

The effects of frustration on extended supersolid states is a largely unexplored subject in the realm of cold-atom systems. In this work, we explore the impact of quasicrystalline lattices on the supersolid phases of dipolar bosons. Our findings reveal that weak quasicrystalline lattices can induce a variety of modulated phases, merging the inherent solid pattern with a quasiperiodic decoration induced by the external potential.

View Article and Find Full Text PDF

At low temperatures, classical ultrasoft particle systems develop interesting phases via the self-assembly of particle clusters. In this study, we reach analytical expressions for the energy and the density interval of the coexistence regions for general ultrasoft pairwise potentials at zero temperatures. We use an expansion in the inverse of the number of particles per cluster for an accurate determination of the different quantities of interest.

View Article and Find Full Text PDF

Spatial resolution of stimulated emission depletion (STED) microscopy varies with sample labeling techniques and microscope components, e.g., lasers, lenses, and photodetectors.

View Article and Find Full Text PDF

We present a sufficient criterion for the emergence of cluster phases in an ensemble of interacting classical particles with repulsive two-body interactions. Through a zero-temperature analysis in the low density region we determine the relevant characteristics of the interaction potential that make the energy of a two-particle cluster-crystal become smaller than that of a simple triangular lattice in two dimensions. The method leads to a mathematical condition for the emergence of cluster crystals in terms of the sum of Fourier components of a regularized interaction potential, which can be in principle applied to any arbitrary shape of interactions.

View Article and Find Full Text PDF

The competition between a short range attractive interaction and a nonlocal repulsive interaction promote the appearance of modulated phases. In this work we present the microscopic mechanisms leading to the emergence of inverse transitions in such systems by considering a thorough mean-field analysis of a variety of minimal models with different competing interactions. We identify the specific connections between the characteristic energy of the homogeneous and modulated phases and the observed reentrant behaviors in the phase diagram.

View Article and Find Full Text PDF

In this work, we used a generalized Frenkel-Kontorova model to study the mobility of water molecules inside carbon nanotubes with small radius at low temperatures. Our simulations show that the mobility of confined water decreases monotonically increasing the amplitude of the substrate potential at fixed commensurations. On the other hand, the mobility of the water molecules shows a non-monotonic behavior when varying the commensuration.

View Article and Find Full Text PDF

We study two dimensional stripe forming systems with competing repulsive interactions decaying as r(-α). We derive an effective Hamiltonian with a short-range part and a generalized dipolar interaction which depends on the exponent α. An approximate map of this model to a known XY model with dipolar interactions allows us to conclude that, for α<2 long-range orientational order of stripes can exist in two dimensions, and establish the universality class of the models.

View Article and Find Full Text PDF

We show that in order to describe the isotropic-nematic transition in stripe-forming systems with isotropic competing interactions of the Brazovskii class it is necessary to consider the next to leading order in a 1/N approximation for the effective Hamiltonian. This can be conveniently accomplished within the self-consistent screening approximation. We solve the relevant equations and show that the self-energy in this approximation is able to generate the essential wave vector dependence to account for the anisotropic character of a two-point correlation function characteristic of a nematic phase.

View Article and Find Full Text PDF

Two coarse-grained models which capture some universal characteristics of stripe forming systems are studied. At high temperatures, the structure factors of both models attain their maxima on a circle in reciprocal space, as a consequence of generic isotropic competing interactions. Although this is known to lead to some universal properties, we show that the phase diagrams have important differences, which are a consequence of the particular k dependence of the fluctuation spectrum in each model.

View Article and Find Full Text PDF