Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the polyglutamine (polyQ) expansion in huntingtin (HTT) protein. The challenge of obtaining full-length HTT proteins with high purity limits the understanding of the HTT protein function. Here, we provide a protocol to generate and purify full-length recombinant human HTT proteins with various polyQ lengths, which is key to investigate the biochemical function of HTT proteins and the molecular mechanism underlying HD pathology.
View Article and Find Full Text PDFIn this review, we summarize the available published information on the neuroprotective effects of increasing nicotinamide adenine dinucleotide (NAD) levels in Huntington's disease models. We discuss the rationale of potential therapeutic benefit of administering nicotinamide riboside (NR), a safe and effective NAD precursor. We discuss the agonistic effect on the Sirtuin1-PGC-1α-PPAR pathway as well as Sirtuin 3, which converge in improving mitochondrial function, decreasing ROS production and ameliorating bioenergetics deficits.
View Article and Find Full Text PDFThe polyglutamine expansion in huntingtin protein causes Huntington's disease. Here, we investigated structural and biochemical properties of huntingtin and the effect of the polyglutamine expansion using various biophysical experiments including circular dichroism, single-particle electron microscopy and cross-linking mass spectrometry. Huntingtin is likely composed of five distinct domains and adopts a spherical α-helical solenoid where the amino-terminal and carboxyl-terminal regions fold to contain a circumscribed central cavity.
View Article and Find Full Text PDFIntroduction: Germline silencing of the PD-related protein LRRK2 does not alter glutamate or dopamine release in adult mice, but some exploratory abnormalities have been reported with ageing. Contrastingly, high levels of human LRRK2 cause locomotor alterations and cognitive deficits accompanied by reduced striatal dopamine levels, with the latter also observed in G2019S mutant mice. Comparative cognitive and motor behavioral testing of LRRK2 KO, overexpressor and mutant overexpressor mice has not previously been reported.
View Article and Find Full Text PDFThe Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat alpha-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes.
View Article and Find Full Text PDFGenetically precise models of Huntington's disease (HD), Hdh CAG knock-in mice, are powerful systems in which phenotypes associated with expanded HD CAG repeats are studied. To dissect the genetic pathways that underlie such phenotypes, we have generated Hdh(Q111) knock-in mouse lines that are congenic for C57BL/6, FVB/N and 129Sv inbred genetic backgrounds and investigated four Hdh(Q111) phenotypes in these three genetic backgrounds: the intergenerational instability of the HD CAG repeat and the striatal-specific somatic HD CAG repeat expansion, nuclear mutant huntingtin accumulation and intranuclear inclusion formation. Our results reveal increased intergenerational and somatic instability of the HD CAG repeat in C57BL/6 and FVB/N backgrounds compared with the 129Sv background.
View Article and Find Full Text PDFThe Kluyveromyces lactis FUS1 gene was cloned, physically characterized and its role in the mating response pathway was determined. The gene encodes a putative membrane protein, whose structure shows a single membrane-spanning segment, a short extracellular amino-terminus and a long carboxy-terminus, located in the cytoplasmic side. The predicted primary structure of the protein shows a number of serine and threonine residues in the amino-terminus, which in analogy to Fus1p of Saccharomyces cerevisiae might be O-glycosylated.
View Article and Find Full Text PDF