Genome editing and plant transformation are crucial techniques in plant biotechnology, allowing for the precise modification of plant genomes to enhance agronomically essential traits. The advancement of CRISPR-based genome editing tools in plants is limited, among others, by developing novel tissue culture methodologies for efficient plant genetic transformation. methodologies offer a promising alternative to overcome tissue culture limitations and facilitate crops' genetic improvement.
View Article and Find Full Text PDFTissue culture optimization protocols limit indica rice breeding. Such a challenge is vital because emergent techniques still rely on tissue culture methods and could allow the breeding of new varieties with higher production and toleration of adverse environmental effects caused by climate change. Genome editing technology, using CRISPR/Cas9, is a fast and precise method for accelerated plant breeding.
View Article and Find Full Text PDFGamma radiation (Co)-induced mutagenesis offers an alternative to develop rice lines by accelerating the spontaneous mutation process and increasing the pool of allelic variants available for breeding. Ionizing radiation works by direct or indirect damage to DNA and subsequent mutations. The technique can take advantage of in vitro protocols to optimize resources and accelerate the development of traits.
View Article and Find Full Text PDFThe development of gamma ray-mutated rice lines is a solution for introducing genetic variability in indica rice varieties already being used by farmers. In vitro gamma ray (Co) mutagenesis reduces chimeras and allows for a faster selection of desirable traits but requires the optimization of the laboratory procedure. The objectives of the present work were sequencing of K and L, the in vitro establishment of recalcitrant rice embryogenic calli, the determination of their sensitivity to gamma radiation, and optimization of the generation procedure.
View Article and Find Full Text PDFRNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through host-induced gene silencing (HIGS) and emerging evidence that spray-induced gene silencing (SIGS) techniques can work as well to control viruses, bacteria, fungi, insects, and nematodes. For SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption by the target organism.
View Article and Find Full Text PDFMaize production is one of the most important activities for the Honduran economy, both in terms of area cultivated and food security provided. This article reports the results of a survey undertaken to gauge knowledge, perceptions, opinions, and attitudes of Honduran farmers towards genetically modified (GM) maize. Data were collected from 32 maize producers in 2018-19, of both conventional and GM, in five different departments (regions) of Honduras.
View Article and Find Full Text PDFBacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium.
View Article and Find Full Text PDF