Publications by authors named "Alejandro Guzman-Silva"

Free fatty acid receptor 1 phosphorylation sites were studied using mutants, including a) a mutant with T215V in the third intracellular loop (3IL), b) another with changes in the carboxyl terminus (C-term): T287V, T293V, S298A, and c) a mutant with all of these changes (3IL/C-term). Agonist-induced increases in intracellular calcium were similar between cells expressing wild-type or mutant receptors. In contrast, agonist-induced FFA1 receptor phosphorylation was reduced in mutants compared to wild type.

View Article and Find Full Text PDF

The lysophosphatidic acid 3 receptor (LPA) participates in different physiological actions and in the pathogenesis of many diseases through the activation of different signal pathways. Knowledge of the regulation of the function of the LPA receptor is a crucial element for defining its roles in health and disease. This review describes what is known about the signaling pathways activated in terms of its various actions.

View Article and Find Full Text PDF

An increase in intracellular Ca concentration ([Ca]) plays a key role in controlling endothelial functions; however, it is still unclear whether endothelial Ca handling is altered by type 2 diabetes mellitus, which results in severe endothelial dysfunction. Herein, we analyzed for the first time the Ca response to the physiological autacoid ATP in native aortic endothelium of obese Zucker diabetic fatty (OZDF) rats and their lean controls, which are termed LZDF rats. By loading the endothelial monolayer with the Ca-sensitive fluorophore, Fura-2/AM, we found that the endothelial Ca response to 20 µM and 300 µM ATP exhibited a higher plateau, a larger area under the curve and prolonged duration in OZDF rats.

View Article and Find Full Text PDF

FFA4 (Free Fatty Acid receptor 4, previously known as GPR120) is a G protein-coupled receptor that acts as a sensor of long-chain fatty acids, modulates metabolism, and whose dysfunction participates in endocrine disturbances. FFA4 is known to be phosphorylated and internalized in response to agonists and protein kinase C activation. In this paper report the modulation of this fatty acid receptor by activation of receptor tyrosine kinases.

View Article and Find Full Text PDF

Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques.

View Article and Find Full Text PDF

Endothelial injury is the primary event that leads to a variety of severe vascular disorders. Mechanical injury elicits a Ca(2+) response in the endothelium of excised rat aorta, which comprises an initial Ca(2+) release from inositol-1,4,5-trisphosphate (InsP(3))-sensitive stores followed by a long-lasting decay phase due to Ca(2+) entry through uncoupled connexons. The Ca(2+) signal may also adopt an oscillatory pattern, the molecular underpinnings of which are unclear.

View Article and Find Full Text PDF

The role of Na(+)-Ca(2+) exchanger (NCX) in vascular endothelium is still matter of debate. Depending on both the endothelial cell (EC) type and the extracellular ligand, NCX has been shown to operate in either the forward (Ca(2+) out)- or the reverse (Ca(2+) in)-mode. In particular, acetylcholine (Ach) has been shown to promote Ca(2+) inflow in the intact endothelium of excised rat aorta.

View Article and Find Full Text PDF