Front Endocrinol (Lausanne)
April 2024
Bartter syndrome (BS) is a salt-losing hereditary tubulopathy characterized by hypokalemic metabolic alkalosis with secondary hyperaldosteronism. Confirmatory molecular diagnosis may be difficult due to genetic heterogeneity and overlapping of clinical symptoms. The aim of our study was to describe the different molecular findings in patients with a clinical diagnosis of classic BS.
View Article and Find Full Text PDFVitamin D is essential for the normal mineralization of bones during childhood. Although diet and adequate sun exposure should provide enough of this nutrient, there is a high prevalence of vitamin D deficiency rickets worldwide. Children with certain conditions that lead to decreased vitamin D production and/or absorption are at the greatest risk of nutritional rickets.
View Article and Find Full Text PDFDistal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described.
View Article and Find Full Text PDFBackground: Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal mechanisms of urinary acidification. Most cases are secondary to pathogenic variants in ATP6V0A4, ATP6V1B1, and SLC4A1 genes, which encode transporters regulating acid-base balance in the collecting duct.
Methods: Retrospective study of molecular and clinical data from diagnosis and long-term follow-up (10, 20, and 40±10 years) of 16 patients with primary dRTA diagnosed in childhood.
The GCM2 gene encodes a transcription factor predominantly expressed in parathyroid cells that is known to be critical for development, proliferation and maintenance of the parathyroid cells. A cohort of 127 Spanish patients with a disorder of calcium metabolism were screened for mutations by Next-Generation Sequencing (NGS). A targeted panel for disorders of calcium and phosphorus metabolism was designed to include 65 genes associated with these disorders.
View Article and Find Full Text PDFThe maintenance of magnesium (Mg2+) homeostasis is essential for human life. The Cystathionine-β-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) have been described to be involved in maintaining Mg2+ homeostasis. Among these CNNMs, CNNM2 is expressed in the basolateral membrane of the kidney tubules where it is involved in Mg2+ reabsorption.
View Article and Find Full Text PDFBackground: Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive tubulopathy characterized by excessive urinary wasting of magnesium and calcium, bilateral nephrocalcinosis, and progressive chronic renal failure in childhood or adolescence. FHHNC is caused by mutations in CLDN16 and CLDN19, which encode the tight-junction proteins claudin-16 and claudin-19, respectively. Most of these mutations are missense mutations and large deletions are rare.
View Article and Find Full Text PDFContext: Familial neurohypophyseal diabetes insipidus is a rare disease produced by a deficiency in the secretion of antidiuretic hormone and is caused by mutations in the arginine vasopressin gene.
Objective: Clinical, biochemical, and genetic characterization of a group of patients clinically diagnosed with familial neurohypophyseal diabetes insipidus, 1 of the largest cohorts of patients with protein neurophysin II (AVP-NPII) gene alterations studied so far.
Design: The AVP-NPII gene was screened for mutations by PCR followed by direct Sanger sequencing in 15 different unrelated families from Spain.
Objective: Monogenic diabetes can be misdiagnosed as type 1 or type 2 diabetes in children. The right diagnosis is crucial for both therapeutic choice and prognosis and influences genetic counseling. The main objective of this study was to search for monogenic diabetes in Spanish pediatric patients suspected of type 1 diabetes with lack of autoimmunity at the onset of the disease.
View Article and Find Full Text PDFBackground: Mutations in () have been associated with congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Diabetes and other less frequent anomalies have also been described. Variable penetrance and intrafamilial variability have been demonstrated including severe prenatal phenotypes.
View Article and Find Full Text PDFEndocrinol Diabetes Metab Case Rep
December 2018
Familial hypocalciuric hypercalcemia type I is an autosomal dominant disorder caused by heterozygous loss-of-function mutations in the CASR gene and is characterized by moderately elevated serum calcium concentrations, low urinary calcium excretion and inappropriately normal or mildly elevated parathyroid hormone (PTH) concentrations. We performed a clinical and genetic characterization of one patient suspected of familial hypocalciuric hypercalcemia type I. Patient presented persistent hypercalcemia with normal PTH and 25-hydroxyvitamin D levels.
View Article and Find Full Text PDFObjective Molecular diagnosis is a useful diagnostic tool in calcium metabolism disorders. The calcium-sensing receptor (CaSR) is known to play a central role in the regulation of extracellular calcium homeostasis. We performed clinical, biochemical and genetic characterization of sequence anomalies in this receptor in a cohort of 130 individuals from 82 families with suspected alterations in the CASR gene, one of the largest series described.
View Article and Find Full Text PDFBackground And Objectives: Hypocitraturia has been associated with metabolic acidosis and mineral disorders. The aim of this study was to investigate the occurrence of urinary acidification defects underlying hypocitraturia.
Materials And Methods: This retrospective observational study included 67 patients (32 men), aged 40.
Introduction: Type III Bartter syndrome (BS) is an autosomal recessive renal tubule disorder caused by loss-of-function mutations in the CLCNKB gene, which encodes the chloride channel protein ClC-Kb. In this study, we carried out a complete clinical and genetic characterization in a cohort of 30 patients, one of the largest series described. By comparing with other published populations, and considering that 80% of our patients presented the p.
View Article and Find Full Text PDFClaudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI.
View Article and Find Full Text PDFUnlabelled: Molecular diagnosis is a useful diagnostic tool in primary nephrogenic diabetes insipidus (NDI), an inherited disease characterized by renal inability to concentrate urine. The AVPR2 and AQP2 genes were screened for mutations in a cohort of 25 patients with clinical diagnosis of NDI. Patients presented with dehydration, polyuria-polydipsia, failure to thrive (mean ± SD; Z-height -1.
View Article and Find Full Text PDFThe p.Ala204Thr mutation (exon 7) of the CLCNKB gene is a "founder" mutation that causes most of type III Bartter syndrome cases in Spain. We performed genetic analysis of the CLCNKB gene, which encodes for the chloride channel protein ClC-Kb, in a cohort of 26 affected patients from 23 families.
View Article and Find Full Text PDF