White adipose tissue (WAT) regulates energy balance through energy storage, adipokines secretion and the thermogenesis process. Beige adipocytes are responsible for WAT thermogenesis. They are generated by adipogenesis or transdifferentiation during cold or β3-adrenergic agonist stimulus through a process called browning.
View Article and Find Full Text PDFSpexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis.
View Article and Find Full Text PDFAim: Glucocorticoids (GCs) play a crucial role in energy homeostasis including white adipose tissue function; however, chronic GC excess is detrimental to mammals' health. White hypertrophic adiposity is a main factor for neuroendocrine-metabolic dysfunctions in monosodium L-glutamate (MSG)-damaged hypercorticosteronemic rat. Nevertheless, little is known about the receptor path in endogenous GC impact on white adipose tissue-resident precursor cells to bring them into beige lineage.
View Article and Find Full Text PDFWhite adipose tissue (WAT) browning has gained interest due to its impact in obesity. Here, we evaluated the effect of androgens on the Ucp1-dependent thermogenic process from inguinal (IAT) and retroperitoneal (RPAT) WAT. Surgically androgens depleted rats (ODX) showed basal thermogenic activation (room temperature) in both WAT depots, which expressed higher levels of Ucp1, Prdm16 and Pgc1a.
View Article and Find Full Text PDF