Publications by authors named "Alejandro Delorenzi"

The interactions between memory processes and emotions are complex. Our previous investigations in the crab Neohelice led to an adaptation of the affective extension of sometimes opponent processes (AESOP) model. The model proposes that emotions generate separate emotive memory traces, and that the unfolding of emotional responses is a crucial component of the behavioral expression of reactivated memories.

View Article and Find Full Text PDF

High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement.

View Article and Find Full Text PDF

Stress alters memory. Understanding how and when acute stress improves or impairs memory is a challenge. Stressors can affect memory depending on a combination of factors.

View Article and Find Full Text PDF

The hypothesis of a common origin for high-order memory centers in bilateral animals presents the question of how different brain structures, such as the vertebrate hippocampus and the arthropod mushroom bodies, are both structurally and functionally comparable. Obtaining evidence to support the hypothesis that crustaceans possess structures equivalent to the mushroom bodies that play a role in associative memories has proved challenging. Structural evidence supports that the hemiellipsoid bodies of hermit crabs, crayfish and lobsters, spiny lobsters, and shrimps are homologous to insect mushroom bodies.

View Article and Find Full Text PDF

The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories.

View Article and Find Full Text PDF

Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences.

View Article and Find Full Text PDF

The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods' higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking.

View Article and Find Full Text PDF

There is growing evidence that certain reactivation conditions restrict the onset of both the destabilization phase and the restabilization process or reconsolidation. However, it is not yet clear how changes in memory expression during the retrieval experience can influence the emergence of the labilization/reconsolidation process. To address this issue, we used the context-signal memory model of Chasmagnathus.

View Article and Find Full Text PDF

Background: Due to the complexity and variability of natural environments, the ability to adaptively modify behavior is of fundamental biological importance. Motion vision provides essential cues for guiding critical behaviors such as prey, predator, or mate detection. However, when confronted with the repeated sight of a moving object that turns out to be irrelevant, most animals will learn to ignore it.

View Article and Find Full Text PDF

The reconsolidation hypothesis has challenged the traditional view of fixed memories after consolidation. Reconsolidation studies have disclosed that the mechanisms mediating memory retrieval and the mechanisms that underlie the behavioral expression of memory can be dissociated, offering a new prospect for understanding the nature of experimental amnesia. The muscarinic antagonist scopolamine has been used for decades to induce experimental amnesias The goal of the present study is to determine whether the amnesic effects of scopolamine are due to storage (or retrieval) deficits or, alternatively, to a decrease in the long-term memory expression of a consolidated long-term memory.

View Article and Find Full Text PDF

Before the memory trace is stored long term, it must undergo a phase of consolidation during which it remains susceptible to modifications. It has previously been proposed that during consolidation, memories are kept from being stored long term, and can therefore be modified with additional information resulting from ongoing behavior. The Chasmagnathus associative memory model is used here to test whether it is possible during consolidation to modify the long-term expression of a memory generated by a weak training procedure.

View Article and Find Full Text PDF

Memory reconsolidation is a dynamic process in which a previously consolidated memory becomes labile following reactivation by a reminder. In a previous study in the crab Chasmagnathus memory model, we showed that a water-shortage episode, via angiotensin modulation during reconsolidation, could reveal a memory that otherwise remains unexpressed: weakly trained animals cannot reveal long-term memory (LTM) except when an episode of noticeable ethological meaning, water deprivation, is contingent upon reconsolidation. However, these results are at variance with two of our previous interpretations: weak training protocols do not build LTM and angiotensin II modulates the strength of the information storing process.

View Article and Find Full Text PDF

The angiotensins constitute a neuropeptidergic system that emerged early in evolution. Their classical osmoregulatory and dipsogenic functions and their mnemonic actions have been demonstrated both in vertebrates and in some invertebrates. Previously, we have shown that, in the euryhaline and semiterrestrial crab Chasmagnathus granulatus, water deprivation correlates with an increased level of brain angiotensin-II-like neuropeptide/s (ANGII-like) and improves memory processes through ANGII receptors.

View Article and Find Full Text PDF

Reconsolidation studies have led to the hypothesis that memory, when labile, would be modified in order to incorporate new information. This view has reinstated original propositions suggesting that short-term memory provides the organism with an opportunity to evaluate and rearrange information before storing it, since it is concurrent with the labile state of consolidation. The Chasmagnathus associative memory model is used here to test whether during consolidation it is possible to change some attribute of recently acquired memories.

View Article and Find Full Text PDF

Heat-shock proteins (Hsp) are synthesized in the central nervous system in response to traumas but also after physical exercise and psychophysiological stress. Therefore, an increase in Hsp expression is a good marker of changes in metabolic activity. In the crab Chasmagnathus, a powerful memory paradigm has been established.

View Article and Find Full Text PDF

A considerable body of evidence reveals that consolidated memories, recalled by a reminder, enter into a new vulnerability phase during which they are susceptible to disruption again. Consistently, reconsolidation was shown by the amnesic effects induced by administration of consolidation blockers after memory labilization. To shed light on the functional value of reconsolidation, we explored whether an endogenous process activated during a concurrent real-life experience improved this memory phase.

View Article and Find Full Text PDF

Angiotensin II (ANGII) has an evolutionary preserved role in determining adaptative responses to water-shortages. In addition, it has been shown to modulate diverse phases of memory. Still, it is not clear whether ANGII improves or spoils memory.

View Article and Find Full Text PDF

It was previously demonstrated that mitogen-activated protein kinase (MAPK) signaling plays a pivotal role in neural plasticity and memory processes both in rodents and mollusks. Although the MAPK pathways are highly conserved, no evidence was found for its participation in memory models in other animal groups. Here we found ERK-like and JNK-like cross-immunoreactivity in the crab brain with phospho-specific antibodies and we estimated ERK and JNK activity during long-term memory consolidation in the context-signal learning paradigm of the crab Chasmagnathus.

View Article and Find Full Text PDF