It is expected that CO concentration will increase in the air, thereby stimulating the photosynthesis process and, hence, plant biomass production. In the case of legumes, increased biomass due to higher CO concentration can stimulate atmospheric nitrogen (N) fixation in the nodules. However, N fixation is inhibited by external N supply.
View Article and Find Full Text PDFIntercropping legumes with cereals can lead to increased overall yield and optimize the utilization of resources such as water and nutrients, thus enhancing agricultural efficiency. Legumes possess the unique ability to acquire nitrogen (N) through both N fixation and from the available N in the soil. However, soil N can diminish the N fixation capacity of legumes.
View Article and Find Full Text PDFLeaf water potential, gas exchange, and chlorophyll fluorescence exhibited significant differences among genotypes, high environmental effects, but low heritability. The highest-yielding and drought-tolerant genotypes presented superior harvest index and grain weight, compared to drought-susceptible ones. Physiological phenotyping can help identify useful traits related to crop performance under water-limited conditions.
View Article and Find Full Text PDFIn this study, daily changes over a short period and diurnal progression of spectral reflectance at the leaf level were used to identify spring wheat genotypes ( L.) susceptible to adverse conditions. Four genotypes were grown in pots experiments under semi-controlled conditions in Chile and Spain.
View Article and Find Full Text PDFThe global concern about the gap between food production and consumption has intensified the research on the genetics, ecophysiology, and breeding of cereal crops. In this sense, several genetic studies have been conducted to assess the effectiveness and sustainability of collections of germplasm accessions of major crops. In this study, a spectral-based classification approach for the assignment of wheat cultivars to genetically differentiated subpopulations (genetic structure) was carried out using a panel of 316 spring bread cultivars grown in two environments with different water regimes (rainfed and fully irrigated).
View Article and Find Full Text PDFDue to climate change and expected food shortage in the coming decades, not only will it be necessary to develop cultivars with greater tolerance to environmental stress, but it is also imperative to reduce breeding cycle time. In addition to yield evaluation, plant breeders resort to many sensory assessments and some others of intermediate complexity. However, to develop cultivars better adapted to current/future constraints, it is necessary to incorporate a new set of traits, such as morphophysiological and physicochemical attributes, information relevant to the successful selection of genotypes or parents.
View Article and Find Full Text PDFThe onset and rate of senescence influence key agronomical traits, including grain yield (GY). Our objective was to assess the relationships between stay-green and GY in a set of fourteen spring bread wheat ( L.) genotypes with contrasting tolerance to water stress.
View Article and Find Full Text PDFBoth the temperate-humid zone and the southern part of the Mediterranean climate region of Chile are characterized by high wheat productivity. Study objectives were to analyze the yield potential, yield progress, and genetic progress of the winter bread wheat ( L.) cultivars and changes in agronomic and morphophysiological traits during the past 60 years.
View Article and Find Full Text PDFThe phenotypic diversity and productivity of a diverse alfalfa ( subspp.) panel of cultivars, landraces and wild relatives with putative drought tolerance were evaluated in two Mediterranean environments (central Chile and Southern Australia). In Chile, 70 accessions were evaluated in rainfed conditions and in Australia 30 accessions under rainfed and irrigated conditions, during three growing seasons.
View Article and Find Full Text PDFWater deficit represents an important challenge for wheat production in many regions of the world. Accumulation and remobilization of water-soluble carbohydrates (WSCs) in stems are part of the physiological responses regulated by plants to cope with water stress and, in turn, determine grain yield (GY). The genetic mechanisms underlying the variation in WSC are only partially understood.
View Article and Find Full Text PDFWheat roots are known to play an important role in the yield performance under water-limited (WL) conditions. Three consecutive year trials (2015, 2016, and 2017) were conducted in a glasshouse in 160 cm length tubes on a set of spring wheat ( L.) genotypes under contrasting water regimes (1) to assess genotypic variability in root weight density (RWD) distribution in the soil profile, biomass partitioning, and total water used; and (2) to determine the oxygen and hydrogen isotopic signatures of plant and soil water in order to evaluate the contribution of shallow and deep soil water to plant water uptake and the evaporative enrichment of these isotopes in the leaf as a surrogate for plant transpiration.
View Article and Find Full Text PDFWheat plants growing under Mediterranean rain-fed conditions are exposed to water deficit, particularly during the grain filling period, and this can lead to a strong reduction in grain yield (GY). This study examines the effects of water deficit after during the grain filling period on photosynthetic and water-use efficiencies at the leaf and whole-plant level for 14 bread wheat genotypes grown in pots under glasshouse conditions. Two glasshouse experiments were conducted, one in a conventional glasshouse at the Universidad de Talca, Chile (Experiment 1), and another at the National Plant Phenomics Centre (NPPC), Aberystwyth, UK (Experiment 2), in 2015.
View Article and Find Full Text PDFIn most legume nodules, the di-nitrogen (N)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper.
View Article and Find Full Text PDFCanopy temperature (Tc) by thermal imaging is a useful tool to study plant water status and estimate other crop traits. This work seeks to estimate grain yield (GY) and carbon discrimination (ΔC) from stress degree day (SDD = Tc - air temperature, Ta), considering the effect of a number of environmental variables such as the averages of the maximum vapor pressure deficit (VPDmax) and the ambient temperature (Tmax), and the soil water content (SWC). For this, a set of 384 and a subset of 16 genotypes of spring bread wheat were evaluated in two Mediterranean-climate sites under water stress (WS) and full irrigation (FI) conditions, in 2011 and 2012, and 2014 and 2015, respectively.
View Article and Find Full Text PDFIn Mediterranean climates soil water deficit occurs mainly during the spring and summer, having a great impact on cereal productivity. While previous studies have indicated that the grain yield (GY) of triticale is usually higher than bread wheat ( L.), comparatively little is known about the performance of these crops under water-limited conditions or the physiological traits involved in the different yields of both crops.
View Article and Find Full Text PDFAquaporins (AQPs) are transmembrane proteins essential for controlling the flow of water and other molecules required for development and stress tolerance in plants, including important crop species such as wheat (). In this study, we utilized a genomic approach for analyzing the information about AQPs available in public databases to characterize their structure and function. Furthermore, we validated the expression of a suite of AQP genes, at the transcriptional level, including accessions with contrasting responses to drought, different organs and water stress levels.
View Article and Find Full Text PDFScientists have been interested in many topics driven by biological invasions, such as shifts in the area of distribution of plant species and rapid evolution. Invasiveness of exotic plant species depends on variations on morphological and reproductive traits potentially associated with reproductive fitness and dispersal ability, which are expected to undergo changes during the invasion process. Numerous Asteraceae are invasive and display dimorphic fruits, resulting in a bet-hedging dispersal strategy -wind-dispersed fruits versus animal-dispersed fruits-.
View Article and Find Full Text PDFThe genetic and physiological mechanisms underlying the relationship between water-soluble carbohydrates (WSC) and water stress tolerance are scarcely known. This study aimed to evaluate the main WSC in stems, and the expression of genes involved in fructan metabolism in wheat genotypes growing in a glasshouse with water stress (WS; 50% field capacity from heading) and full irrigation (FI; 100% field capacity). Eight wheat genotypes (five tolerant and three susceptible to water stress) were evaluated initially (experiment 1) and the two most contrasting genotypes in terms of WSC accumulation were evaluated in a subsequent experiment (experiment 2).
View Article and Find Full Text PDFDispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. non-dispersing fruits.
View Article and Find Full Text PDFPhenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( L.) were tested under fully irrigated (FI) and water stress (WS) conditions.
View Article and Find Full Text PDFBackground: Whole-genome genotyping techniques like Genotyping-by-sequencing (GBS) are being used for genetic studies such as Genome-Wide Association (GWAS) and Genomewide Selection (GS), where different strategies for imputation have been developed. Nevertheless, imputation error may lead to poor performance (i.e.
View Article and Find Full Text PDFDifferent physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI).
View Article and Find Full Text PDFThis study identified single nucleotide polymorphism (SNP) markers associated with 15 complex traits in a breeding population of barley (Hordeum vulgare L.) consisting of 137 recombinant chromosome substitution lines (RCSL), evaluated under contrasting water availability conditions in the Mediterranean climatic region of central Chile. Given that markers showed a very strong segregation distortion, a quantitative trait locus/loci (QTL) mapping mixed model was used to account for the heterogeneity in genetic relatedness between genotypes.
View Article and Find Full Text PDFRecent advances in wireless technologies have lead to an increase in wireless instrumentation present in healthcare centers. This paper presents an analytical method for characterizing electric field (E-field) exposure within these environments. The E-field levels of the different wireless communications systems have been measured in two floors of the Canary University Hospital Consortium (CUHC).
View Article and Find Full Text PDF