Publications by authors named "Alejandro D Roth"

Oligodendrocyte precursor cells (OPCs) differentiate during postnatal development into myelin-forming oligodendrocytes, in a process distinguished by substantial changes in morphology and the onset of myelin gene expression. A mammalian-specific CNS myelin gene, tmem10, also called Opalin, encodes a type 1 transmembrane protein that is highly upregulated during early stages of OPC differentiation; however, a function for TMEM10 has not yet been identified. Here, consistent with previous studies, we detect TMEM10 protein in mouse brain beginning at ~P10 and show that protein levels continue to increase as oligodendrocytes differentiate and myelinate axons in vivo.

View Article and Find Full Text PDF

The study of the metabolic interactions between myelinating glia and the axons they ensheath has blossomed into an area of research much akin to the elucidation of the role of astrocytes in tripartite synapses (Tsacopoulos and Magistretti in J Neurosci 16:877-885, 1996). Still, unlike astrocytes, rich in cytochrome-P450 and other anti-oxidative defense mechanisms (Minn et al. in Brain Res Brain Res Rev 16:65-82, 1991; Wilson in Can J Physiol Pharmacol.

View Article and Find Full Text PDF

Primary Cilia (PC) are a very likely place for signal integration where multiple signaling pathways converge. Two major signaling pathways clearly shown to signal through the PC, Sonic Hedgehog (Shh) and PDGF-Rα, are particularly important for the proliferation and differentiation of oligodendrocytes, suggesting that their interaction occurs in or around this organelle. We identified PC in rat oligodendrocyte precursor cells (OPCs) and found that, while easily detectable in early OPCs, PC are lost as these cells progress to terminal differentiation.

View Article and Find Full Text PDF

Phototransduction, the mechanism underlying the electrical response to light in photoreceptor cells, has been thoroughly investigated in Drosophila melanogaster, an essential model in signal transduction research. These cells present a highly specialized photosensitive membrane consisting of thousands of microvilli forming a prominent structure termed a rhabdomere. These microvilli encompass the phototransduction proteins, most of which are transmembrane and exclusively rhabdomeric.

View Article and Find Full Text PDF

Myelin sheaths present two distinct domains: compacted myelin spirals and flanking non-compacted cytoplasmic channels, where lipid and protein segregation is established by unknown mechanisms. Septins, a conserved family of membrane and cytoskeletal interacting GTPases, form intracellular diffusion barriers during cell division and neurite extension and are expressed in myelinating cells. Septins, particularly septin 7 (Sept7), the central constituent of septin polymers, are associated with the cytoplasmic channels of myelinating cells.

View Article and Find Full Text PDF

Myelination is a highly regulated developmental process whereby oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system ensheathe axons with a multilayered concentric membrane. Axonal myelination increases the velocity of nerve impulse propagation. In this work, we present a novel in vitro system for coculturing primary dorsal root ganglia neurons along with myelinating cells on a highly restrictive and micropatterned substrate.

View Article and Find Full Text PDF

Compact myelin, the paranode, and the juxtaparanode are discrete domains that are formed on myelinated axons. In humans, neurological disorders associated with loss of myelin, including Multiple Sclerosis, often also result in disassembly of the node of Ranvier. Despite the importance of these domains in the proper functioning of the CNS, their molecular composition and assembly mechanism remains largely unknown.

View Article and Find Full Text PDF

Autoantibody neuromyelitis optica-IgG (NMO-IgG) recognizing aquaporin-4 (AQP4) is implicated as playing a central role in the physiopathology of NMO. The aim of this in vitro-based study was to characterize functional consequences of interaction between NMO-IgG and cells of the neurovascular unit (astrocytes and brain endothelium) that would provide insight into recognized features of NMO, namely altered blood-brain barrier (BBB) permeability and granulocyte recruitment. We used sera from NMO and longitudinally extensive transverse myelitis cases shown to bind in a characteristic perivascular pattern to primate cerebellar slices.

View Article and Find Full Text PDF

Myelin formation and maintenance depends on the establishment of two structurally and biochemically discernible domains: (a)compact myelin, that is multilamellar stacks of plasma membrane sheets; and (b) cytoplasmic channels that border the compact myelin domains, attach them to the cell body and anchor the myelin sheath to the axonal membrane. To identify proteins involved in the organization of these domains we took advantage of the high lipid content of compact myelin to separate it cleanly from other neural membranes and then used reverse-phase HPLC coupled to Electro-Spray Double Mass Spectrometry('MudPIT') to characterize the proteome of this sample. MudPIT allowed us to sidestep the bias of 2D-PAGE against either highly charged or transmembrane proteins.

View Article and Find Full Text PDF

Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, which allows efficient and rapid propagation of action potentials. However, little is known about the molecular mechanisms operating at the onset of myelination and during maintenance of the myelin sheath in the adult. Here we use a genetic cell ablation approach combined with Affymetrix GeneChip microarrays to identify a number of oligodendrocyte-enriched genes that may play a key role in myelination.

View Article and Find Full Text PDF
Article Synopsis
  • Research on Alzheimer's disease mainly looks at how a protein called beta-Amyloid damages brain cells, but it’s important to also study another type of brain cell called oligodendrocytes.
  • Oligodendrocytes help protect the brain, and studies show that beta-Amyloid can harm them, but other cells like astrocytes can help reduce this damage.
  • There is evidence that inflammation in the brain might make things worse for oligodendrocytes in Alzheimer's, which could lead to more problems in brain function.
View Article and Find Full Text PDF

Nodes of Ranvier are regularly placed, nonmyelinated axon segments along myelinated nerves. Here we show that nodal membranes isolated from the central nervous system (CNS) of mammals restricted neurite outgrowth of cultured neurons. Proteomic analysis of these membranes revealed several inhibitors of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp).

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors (PPARs) are key transcription factors in the control of lipid homeostasis and cell differentiation, but little is known about their function in oligodendrocytes, the major lipid-synthesizing cells in the central nervous system (CNS). Using the B12 oligodendrocyte-like cell line and rat spinal cord-derived oligodendrocytes, we evaluated the importance of PPARgamma in the maturation process of these cells. B12 cells express all PPAR isoforms (alpha, beta/delta, and gamma), as assessed by RT-PCR, Western-blot, and transactivation assays.

View Article and Find Full Text PDF