Virulent infectious agents such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and methicillin-resistant (MRSA) induce tissue damage that recruits neutrophils, monocyte, and macrophages, leading to T cell exhaustion, fibrosis, vascular leak, epithelial cell depletion, and fatal organ damage. Neutrophils, monocytes, and macrophages recruited to pathogen-infected lungs, including SARS-CoV-2-infected lungs, express phosphatidylinositol 3-kinase gamma (PI3Kγ), a signaling protein that coordinates both granulocyte and monocyte trafficking to diseased tissues and immune-suppressive, profibrotic transcription in myeloid cells. PI3Kγ deletion and inhibition with the clinical PI3Kγ inhibitor eganelisib promoted survival in models of infectious diseases, including SARS-CoV-2 and MRSA, by suppressing inflammation, vascular leak, organ damage, and cytokine storm.
View Article and Find Full Text PDFThe ERK1/2 MAPK signalling module integrates extracellular cues that induce proliferation and differentiation of epithelial lineages, and is an established oncogenic driver, particularly in the intestine. However, the interrelation of the ERK1/2 module relative to other signalling pathways in intestinal epithelial cells and colorectal cancer (CRC) is unclear. Here we show that loss of Erk1/2 in intestinal epithelial cells results in defects in nutrient absorption, epithelial cell migration and secretory cell differentiation.
View Article and Find Full Text PDFPrevious studies of the conditional ablation of TGF-β activated kinase 1 (TAK1) in mice indicate that TAK1 has an obligatory role in the survival and/or development of hematopoietic stem cells, B cells, T cells, hepatocytes, intestinal epithelial cells, keratinocytes, and various tissues, primarily because of these cells' increased apoptotic sensitivity, and have implicated TAK1 as a critical regulator of the NF-κB and stress kinase pathways and thus a key intermediary in cellular survival. Contrary to this understanding of TAK1's role, we report a mouse model in which TAK1 deletion in the myeloid compartment that evoked a clonal myelomonocytic cell expansion, splenomegaly, multi-organ infiltration, genomic instability, and aggressive, fatal myelomonocytic leukemia. Unlike in previous reports, simultaneous deletion of TNF receptor 1 (TNFR1) failed to rescue this severe phenotype.
View Article and Find Full Text PDFDNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci.
View Article and Find Full Text PDFAkt signaling plays a central role in many biological functions, such as cell proliferation and apoptosis. Because Akt (also known as protein kinase B) resides primarily in the cytosol, it is not known how these signaling molecules are recruited to the plasma membrane and subsequently activated by growth factor stimuli. We found that the protein kinase Akt undergoes lysine-63 chain ubiquitination, which is important for Akt membrane localization and phosphorylation.
View Article and Find Full Text PDFTumor necrosis factor (TNF) receptor-associated factor (TRAF)-6 mediates Lys63-linked polyubiquitination for NF-kappaB activation via its N-terminal RING and zinc finger domains. Here we report the crystal structures of TRAF6 and its complex with the ubiquitin-conjugating enzyme (E2) Ubc13. The RING and zinc fingers of TRAF6 assume a rigid, elongated structure.
View Article and Find Full Text PDFTRAF6, a crucial adaptor molecule in innate and adaptive immunity, contains three distinct functional domains. The C-terminal TRAF domain facilitates oligomerization and sequence-specific interaction with receptors or other adaptor proteins. In conjunction with the dimeric E2 enzyme Ubc13-Uev1A, the N-terminal RING domain of TRAF6 functions as an E3 ubiquitin (Ub) ligase that facilitates its own site-specific ubiquitination through the generation of a Lys-63-linked poly-Ub chain.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2007
Tumor necrosis factor receptor-associated factor 6 (TRAF6), the crucial adaptor molecule of receptor activator of NF-kappaB (RANK), plays an essential role in governing the formation of multi-nucleated osteoclasts. TRAF6 is a RING-dependent ubiquitin (Ub) ligase that in conjunction with Ubc13/Uev1A catalyzes its own auto-ubiquitination via Lys63-linked poly-Ub chains. While the receptor-adaptor function of TRAF6 in RANK signaling is well understood, the significance of its Ub ligase activity in this process remains largely unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2007
TRAF-interacting protein (TRIP) was initially identified as a TRAF1- and TRAF2-binding partner that inhibited NF-kappaB activation without a known mechanism. Inspection of the TRIP sequence revealed an N-terminal RING domain, which is found in many E3 ubiquitin (Ub) ligases. We show that TRIP is a RING-dependent Ub ligase that undergoes auto-ubiquitination and requires an intact RING domain.
View Article and Find Full Text PDFTransforming growth factor beta-activated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the transforming growth factor beta-signaling pathway, but recent evidence has emerged implicating TAK1 in the interleukin (IL)-1 and tumor necrosis factor (TNF) pathways. Notably, two homologous proteins, TAB2 and TAB3, have been identified as adaptors linking TAK1 to the upstream adaptors TRAFs. However, it remains unclear whether the interaction between TAB2/TAB3 and TAK1 is necessary for its kinase activation and subsequent activation of the IKK and MAPK pathways.
View Article and Find Full Text PDFTumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) is a key mediator in proximal signaling of the interleukin-1/Toll-like receptor and the TNF receptor superfamily. Analysis of TRAF6-deficient mice revealed a fundamental role of TRAF6 in osteoclastogenesis; however, the molecular mechanism underlying TRAF6 signaling in this biological process is not understood. Recent biochemical evidence has indicated that TRAF6 possesses ubiquitin ligase activity that controls the activation of IKK and NF-kappaB.
View Article and Find Full Text PDF