Publications by authors named "Alejandro C Paladini"

The aim of this work was to evaluate if the intraperitoneal administration of the natural compound hesperidin, in a sedative dose, and neo-hesperidin, a hesperidin structural analog that exerts minor sedative effect, were able to induce changes in intracellular signaling cascades in different areas of the brain. The systemic administration of hesperidin produced a marked reduction in the phosphorylation state of extracellular signal-regulated kinases 1/2 (ERK 1/2), but not of Ca(+2)/calmodulin-dependent protein kinase II alpha subunit (alphaCaMKII), in the cerebral cortex, cerebellum and hippocampus. In contrast, neo-hesperidin did not markedly affect the activity of ERK 1/2 in both the cortex and the cerebellum.

View Article and Find Full Text PDF

6,3'-Dinitroflavone (6,3'-DNF) is a synthetic flavone derivative that exerts anxiolytic effects in the elevated plus maze. Based on the finding that this effect is blocked by Ro15-1788 (ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate) which is a specific antagonist at the benzodiazepine binding site of GABA(A) receptors we investigated the interaction of 6,3'-DNF with several recombinant GABA(A) receptor subtypes. Inhibition of [(3)H]flunitrazepam binding to recombinant GABA(A) receptors in transiently transfected HEK293 cells indicated that 6,3'-DNF exhibited the highest affinity for GABA(A) receptors composed of alpha1beta2gamma2 subunits and a 2-20 fold lower affinity for homologous receptors containing alpha2, alpha3, or alpha5 subunits.

View Article and Find Full Text PDF

Previous reports from our laboratory described the sedative activity of hesperidin (hesperetin-7-rhamnoglucoside). This property is greatly increased when the glycoside is injected jointly with diazepam and this interaction has been shown to be synergistic. In the present work the generality of the synergistic phenomenon is proved, since potentiation also occurs with several other benzodiazepines, namely alprazolam, bromazepam, midazolam and flunitrazepam.

View Article and Find Full Text PDF

The pharmacological effects on the central nervous system (CNS) of a range of available flavonoid glycosides were explored and compared to those of the glycosides 2S-hesperidin and linarin, recently isolated from valeriana. The glycosides 2S-neohesperidin, 2S-naringin, diosmin, gossipyn and rutin exerted a depressant action on the CNS of mice following i.p.

View Article and Find Full Text PDF

It has been recently reported the presence in Valeriana of the flavone 6-methylapigenin and the flavanone glycoside hesperidin. The apigenin derivative is a ligand for the benzodiazepine binding site in the gamma-aminobutyric acid receptor type A (GABA(A)) and has anxiolytic properties. Hesperidin has sedative and sleep-enhancing properties but is not a ligand for the benzodiazepine binding site.

View Article and Find Full Text PDF

We have recently reported the presence of the anxiolytic flavone 6-methylapigenin (MA) and of the sedative and sleep-enhancing flavanone glycoside 2S (-) hesperidin (HN) in Valeriana officinalis and Valeriana wallichii. MA, in turn, was able to potentiate the sleep-inducing properties of HN. The present paper reports the identification in V.

View Article and Find Full Text PDF

Valerian is an ancient tranquillizing drug obtained from the underground organs of several Valeriana species. Its active principles were assumed to be terpenoids in the form of valepotriates and/or as components of the essential oil. However, unknown active compounds were not discarded and synergic effects were suspected.

View Article and Find Full Text PDF

Using the guidance by a competitive assay for the benzodiazepine binding site in the GABA(A) receptor, active compounds were isolated from the rhizomes and roots of Valeriana wallichii DC. The UV, NMR and mass spectral data permitted the identification of 6-methylapigenin. This flavonoid has a Ki = 495 nM for the BDZ-bs and a GABA ratio of 1.

View Article and Find Full Text PDF

This review describes the new research developments that have established the CNS-activity of some natural flavonoids. The properties of flavone, chrysin, apigenin and cirsiliol are described and a survey of the occurrence of ligands for the benzodiazepine binding site in the flavonoid field is attempted. Natural compounds, structurally related to flavonoids and with similar CNS-activities, are also included.

View Article and Find Full Text PDF