J Proteome Res
December 2024
The coefficient of variation (CV) is a measure that is frequently used to assess data dispersion for mass spectrometry-based proteomics. In the current era of burgeoning technical developments, there has been an increased focus on using CVs to measure the quantitative precision of new methods. Thus, it has also become important to define a set of guidelines on how to calculate and report the CVs.
View Article and Find Full Text PDFThe link between DNA methylation and neurodevelopmental disorders is well established. However, how DNA methylation is fine-tuned-ensuring precise gene expression and developmental fidelity-remains poorly understood. PROSER1, a known TET2 interactor, was recently linked to a severe neurodevelopmental disorder.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins.
View Article and Find Full Text PDFUsing high-resolution quantitative mass spectrometry, we present comprehensive human and mouse microglia proteomic datasets consisting of over 11,000 proteins across six microglia groups. Microglia share a core protein signature of over 5,600 proteins, yet fundamental differences are observed between species and culture conditions. Mouse microglia demonstrate proteome differences in inflammation- and Alzheimer's disease-associated proteins.
View Article and Find Full Text PDFData-independent acquisition has seen breakthroughs that enable comprehensive proteome profiling using short gradients. As the proteome coverage continues to increase, the quality of the data generated becomes much more relevant. Using Spectronaut, we show that the default search parameters can be easily optimized to minimize the occurrence of false positives across different samples.
View Article and Find Full Text PDFNeutrophils are one of the first responders to infection and are a key component of the innate immune system through their ability to phagocytose and kill invading pathogens, secrete antimicrobial molecules and produce extracellular traps. Neutrophils are produced in the bone marrow, circulate within the blood and upon immune challenge migrate to the site of infection. We wanted to understand whether this transition shapes the mouse neutrophil protein landscape, how the mouse neutrophil proteome is impacted by systemic infection and perform a comparative analysis of human and mouse neutrophils.
View Article and Find Full Text PDFBackground: Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery.
Methods: Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020).
Here, we describe an optimized protocol to analyze murine bone-marrow-derived macrophages using label-free data-independent acquisition (DIA) proteomics. We provide a complete step-by-step protocol describing sample preparation utilizing the S-Trap approach for on-column digestion and peptide purification. We then detail mass spectrometry data acquisition and approaches for data analysis.
View Article and Find Full Text PDFTo overcome oxidative, inflammatory, and metabolic stress, cells have evolved cytoprotective protein networks controlled by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and its negative regulator, Kelch-like ECH associated protein 1 (Keap1). Here, using high-resolution mass spectrometry we characterize the proteomes of macrophages with altered Nrf2 status revealing significant differences among the genotypes in metabolism and redox homeostasis, which were validated with respirometry and metabolomics. Nrf2 affected the proteome following lipopolysaccharide (LPS) stimulation, with alterations in redox, carbohydrate and lipid metabolism, and innate immunity.
View Article and Find Full Text PDFTissue-resident intestinal intraepithelial T lymphocytes (T-IEL) patrol the gut and have important roles in regulating intestinal homeostasis. T-IEL include both induced T-IEL, derived from systemic antigen-experienced lymphocytes, and natural T-IEL, which are developmentally targeted to the intestine. While the processes driving T-IEL development have been elucidated, the precise roles of the different subsets and the processes driving activation and regulation of these cells remain unclear.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is a severe critical condition with a high mortality that is currently in focus given that it is associated with mortality caused by coronavirus disease 2019 (COVID-19). Neutrophils play a key role in the lung injury characteristic of non-COVID-19 ARDS and there is also accumulating evidence of neutrophil mediated lung injury in patients who succumb to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We undertook a functional proteomic and metabolomic survey of circulating neutrophil populations, comparing patients with COVID-19 ARDS and non-COVID-19 ARDS to understand the molecular basis of neutrophil dysregulation.
View Article and Find Full Text PDFX chromosome inactivation (XCI) is a dosage compensation mechanism in female mammals whereby transcription from one X chromosome is repressed. Analysis of human induced pluripotent stem cells (iPSCs) derived from female donors identified that low levels of XIST RNA correlated strongly with erosion of XCI. Proteomic analysis, RNA sequencing (RNA-seq), and polysome profiling showed that XCI erosion resulted in amplified RNA and protein expression from X-linked genes, providing a proteomic characterization of skewed dosage compensation.
View Article and Find Full Text PDFHuman disease phenotypes are driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines.
View Article and Find Full Text PDFMol Cell Proteomics
October 2019
Multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent, tandem mass tags (TMT) in particular. Here we used a large iPSC proteomic experiment with twenty-four 10-plex TMT batches to evaluate the effect of integrating multiple TMT batches within a single analysis. We identified a significant inflation rate of protein missing values as multiple batches are integrated and show that this pattern is aggravated at the peptide level.
View Article and Find Full Text PDFImmune activated T lymphocytes modulate the activity of key metabolic pathways to support the transcriptional reprograming and reshaping of cell proteomes that permits effector T cell differentiation. The present study uses high resolution mass spectrometry and metabolic labelling to explore how murine T cells control the methionine cycle to produce methyl donors for protein and nucleotide methylations. We show that antigen receptor engagement controls flux through the methionine cycle and RNA and histone methylations.
View Article and Find Full Text PDFSummary: The Encyclopedia of Proteome Dynamics (EPD) 'KinoViewer' is an interactive data visualization tool designed for analysis and exploration of both protein and transcript data, showing expression of kinase genes in either human or mouse cells and tissues. The KinoViewer provides a comprehensive, updated graphical display of all human/mouse kinases and an open access analysis tool for the community with a user-friendly graphical interface.
Availability And Implementation: The KinoViewer is based on a manually drawn SVG, which is utilized with D3.
: Viral oncogenes and mutated proto-oncogenes are potent drivers of cancer malignancy. Downstream of the oncogenic trigger are alterations in protein properties that give rise to cellular transformation and the acquisition of malignant cellular phenotypes. Developments in mass spectrometry enable large-scale, multidimensional characterisation of proteomes.
View Article and Find Full Text PDFNucleic Acids Res
January 2018
Driven by improvements in speed and resolution of mass spectrometers (MS), the field of proteomics, which involves the large-scale detection and analysis of proteins in cells, tissues and organisms, continues to expand in scale and complexity. There is a resulting growth in datasets of both raw MS files and processed peptide and protein identifications. MS-based proteomics technology is also used increasingly to measure additional protein properties affecting cellular function and disease mechanisms, including post-translational modifications, protein-protein interactions, subcellular and tissue distributions.
View Article and Find Full Text PDF