Purpose: There is a growing trend towards the adoption of model-based calculation algorithms (MBDCAs) for brachytherapy dose calculations which can properly handle media and source/applicator heterogeneities. However, most of dose calculations in ocular plaque therapy are based on homogeneous water media and standard in-silico ocular phantoms, ignoring non-water equivalency of the anatomic tissues and heterogeneities in applicators and patient anatomy. In this work, we introduce EyeMC, a Monte Carlo (MC) model-based calculation algorithm for ophthalmic plaque brachytherapy using realistic and adaptable patient-specific eye geometries and materials.
View Article and Find Full Text PDFProton arc therapy (PAT) has been proposed as a possible evolution for proton therapy. This commentary uses dosimetric and cancer risk evaluations from earlier studies to compare PAT with intensity modulated proton therapy. It is concluded that, although PAT may not produce better physical dose distributions than intensity modulated proton therapy, the radiobiological considerations associated with particular PAT techniques could offer the possibility of an increased therapeutic index.
View Article and Find Full Text PDF