The gene, coding for the glycosylated collagen- and laminin-binding surface adhesin Cnm, is found in the genomes of approximately 20% of Streptococcus mutans clinical isolates and is associated with systemic infections and increased caries risk. Other surface-associated collagen-binding proteins of S. mutans, such as P1 and WapA, have been demonstrated to form an amyloid quaternary structure with functional implications within biofilms.
View Article and Find Full Text PDFProtein glycosylation has been described as the most abundant and complex post-translational modification occurring in nature. Recent studies have enhanced our view of how this modification occurs in bacteria highlighting the role of protein glycosylation in various processes such as biofilm formation, virulence and host-microbe interactions. We recently showed that the collagen- and laminin-binding adhesin Cnm of the dental pathogen Streptococcus mutans is post-translationally modified by the PgfS glycosyltransferase.
View Article and Find Full Text PDFDuring insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS).
View Article and Find Full Text PDFThe interaction of pathogens with host tissues is a key step towards successful colonization and establishment of an infection. During bacteremia, pathogens can virtually reach all organs in the human body (, heart, kidney, spleen) but host immunity, blood flow and tissue integrity generally prevents bacterial colonization. Yet, patients with cardiac conditions (, congenital heart disease, atherosclerosis, calcific aortic stenosis, prosthetic valve recipients) are at a higher risk of bacterial infection.
View Article and Find Full Text PDFBiofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear.
View Article and Find Full Text PDFIn S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S.
View Article and Find Full Text PDFBacterial glycoproteins are of increasing interest due to their abundance in nature and importance in health and infectious diseases. However, only a very small fraction of bacterial glycoproteins have been characterized and its post-translational modification machinery identified. While analysis of glycoproteins can be achieved through various techniques, this is often limited by the specific characteristics of individual proteins such as type and level of glycosylation.
View Article and Find Full Text PDFStreptococcus mutans is the etiological agent of dental caries and one of the many bacterial species implicated in infective endocarditis. The expression of the collagen-binding protein Cnm by S. mutans has been associated with extraoral infections, but its relevance for dental caries has only been theorized to date.
View Article and Find Full Text PDFExpression of the surface protein Cnm has been directly implicated in the ability of certain strains of Streptococcus mutans to bind to collagen and to invade human coronary artery endothelial cells (HCAEC) and in the killing of Galleria mellonella. Sequencing analysis of Cnm(+) strains revealed that cnm is located between the core genes SMU.2067 and SMU.
View Article and Find Full Text PDFEnterococcus faecalis is an opportunistic nosocomial pathogen that is highly resistant to a variety of environmental insults, including an intrinsic tolerance to antimicrobials that target the cell wall (CW). With the goal of determining the CW-stress stimulon of E. faecalis, the global transcriptional profile of E.
View Article and Find Full Text PDF