Unlabelled: Microbial communities are incredibly diverse. Yet, the eco-evolutionary processes originating and maintaining this diversity remain understudied. Here, we investigate the patterns of diversification for evolving in isolation and with leaking resources used by .
View Article and Find Full Text PDFEpistasis is caused by genetic interactions among mutations that affect fitness. To characterize properties and potential mechanisms of epistasis, we engineered eight double mutants that combined mutations from the rho and rpoB genes of Escherichia coli. The two genes encode essential functions for transcription, and the mutations in each gene were chosen because they were beneficial for adaptation to thermal stress (42.
View Article and Find Full Text PDFLeaf litter microbes collectively degrade plant polysaccharides, influencing land-atmosphere carbon exchange. An open question is how substrate complexity-defined as the structure of the saccharide and the amount of external processing by extracellular enzymes-influences species interactions. We tested the hypothesis that monosaccharides (i.
View Article and Find Full Text PDFExposure to both antibiotics and temperature changes can induce similar physiological responses in bacteria. Thus, changes in growth temperature may affect antibiotic resistance. Previous studies have found that evolution under antibiotic stress causes shifts in the optimal growth temperature of bacteria.
View Article and Find Full Text PDFEvolution can be contingent on history, but we do not yet have a clear understanding of the processes and dynamics that govern contingency. Here, we performed the second phase of a two-phase evolution experiment to investigate features of contingency. The first phase of the experiment was based on Escherichia coli clones that had evolved at the stressful temperature of 42.
View Article and Find Full Text PDFMicroorganisms are the primary engines of biogeochemical processes and foundational to the provisioning of ecosystem services to human society. Free-living microbial communities (microbiomes) and their functioning are now known to be highly sensitive to environmental change. Given microorganisms' capacity for rapid evolution, evolutionary processes could play a role in this response.
View Article and Find Full Text PDFMicrobial communities are constantly challenged with environmental stressors, such as antimicrobials, pollutants, and global warming. How do they respond to these changes? Answering this question is crucial given that microbial communities perform essential functions for life on Earth. Our research aims to understand and predict communities' responses to change by addressing the following questions.
View Article and Find Full Text PDFTemperature variation-through time and across climatic gradients-affects individuals, populations, and communities. Yet how the thermal response of biological systems is altered by environmental stressors is poorly understood. Here, we quantify two key features-optimal temperature and temperature breadth-to investigate how temperature responses vary in the presence of antibiotics.
View Article and Find Full Text PDFPositive species interactions underlie the functioning of ecosystems. Given their importance, it is crucial to understand the stability of positive interactions over evolutionary timescales, in both constant and fluctuating environments; e.g.
View Article and Find Full Text PDFBacteria have evolved diverse mechanisms to survive environments with antibiotics. Temperature is both a key factor that affects the survival of bacteria in the presence of antibiotics and an environmental trait that is drastically increasing due to climate change. Therefore, it is timely and important to understand links between temperature changes and selection of antibiotic resistance.
View Article and Find Full Text PDFSpecies interactions change when the external conditions change. How these changes affect microbial community properties is an open question. We address this question using a two-species consortium in which species interactions change from exploitation to competition depending on the carbon source provided.
View Article and Find Full Text PDFOver the last decade, the genomic revolution has offered the possibility to generate tremendous amounts of data that contain valuable information on the genetic basis of phenotypic traits, such as those linked to human diseases or those that allow for species to adapt to a changing environment. Most ecologically relevant traits are controlled by a large number of genes with small individual effects on trait variation, but that are connected with one another through complex developmental, metabolic and biochemical networks. As a result, it has recently been suggested that most adaptation events in natural populations are reached via correlated changes at multiple genes at a time, for which the name polygenic adaptation has been coined.
View Article and Find Full Text PDFModifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E.
View Article and Find Full Text PDFRecent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco-evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another.
View Article and Find Full Text PDFThe temporal change of phenotypes during the adaptive process remains largely unexplored, as do the genetic changes that affect these phenotypic changes. Here we focused on three mutations that rose to high frequency in the early stages of adaptation within 12 Escherichia coli populations subjected to thermal stress (42 °C). All the mutations were in the rpoB gene, which encodes the RNA polymerase beta subunit.
View Article and Find Full Text PDFFitness tradeoffs are often assumed by evolutionary theory, yet little is known about the frequency of fitness tradeoffs during stress adaptation. Even less is known about the genetic factors that confer these tradeoffs and whether alternative adaptive mutations yield contrasting tradeoff dynamics. We addressed these issues using 114 clones of Escherichia coli that were evolved independently for 2,000 generations under thermal stress (42.
View Article and Find Full Text PDFA key question in evolutionary biology is the reproducibility of adaptation. This question can now be quantitatively analyzed using experimental evolution coupled to whole genome sequencing (WGS). With complete sequence data, one can assess convergence among replicate populations.
View Article and Find Full Text PDFBackground: Beneficial mutations play an essential role in bacterial adaptation, yet little is known about their fitness effects across genetic backgrounds and environments. One prominent example of bacterial adaptation is antibiotic resistance. Until recently, the paradigm has been that antibiotic resistance is selected by the presence of antibiotics because resistant mutations confer fitness costs in antibiotic free environments.
View Article and Find Full Text PDFCuatro Cienegas basin (CCB) is a biodiversity reservoir within the Chihuahuan desert that includes several water systems subject to marked seasonality. While several studies have focused on biodiversity inventories, this is the first study that describes seasonal changes in diversity within the basin. We sampled Pseudomonas populations from a seasonally variable water system at four different sampling dates (August 2003, January 2004, January 2005, and August 2005).
View Article and Find Full Text PDFTo estimate the number and diversity of beneficial mutations, we experimentally evolved 115 populations of Escherichia coli to 42.2°C for 2000 generations and sequenced one genome from each population. We identified 1331 total mutations, affecting more than 600 different sites.
View Article and Find Full Text PDFAt the desert oasis of Cuatro Ciénegas in Coahuila, México, more than 300 oligotrophic pools can be found and a large number of endemic species of plants and animals. The most divergent taxa of diatoms, snail and fishes are located in the Churince hydrological system, where we analyzed the local diversification of cultivable Firmicutes and Actinobacteria. The Churince hydrological system is surrounded by gypsum dunes and has a strong gradient for salinity, temperature, pH and dissolved oxygen.
View Article and Find Full Text PDFNine Gram-negative, rod-shaped, non-spore-forming isolates with identical or very similar repetitive-sequence-based PCR profiles were recovered from an evaporative lagoon in Mexico. Two strains, designated 1N(T) and 3N, had virtually identical 16S rRNA gene sequences and, on the basis of these sequences, were identified as members of the genus Pseudomonas, with Pseudomonas peli R-20805(T) as the closest relative. All nine isolates had practically identical whole-cell protein profiles.
View Article and Find Full Text PDF