Anaerobic microbial metabolisms make flooded paddy soils a major source of the greenhouse gas methane (CH) and mobilize toxic arsenic (As), threatening rice production and consumption. Increasing temperatures due to climate change enhance these microbially mediated processes, increasing their related threats. Chronosequence studies show that long-term paddy use ("age") changes soil properties and redox biogeochemistry through soil organic carbon (SOC) accumulation, its association to amorphous iron (Fe) phases, and increased microbial activity.
View Article and Find Full Text PDFInorganic and methylated thioarsenates have recently been reported to form in paddy soil pore waters and accumulate in rice grains. Among them, dimethylmonothioarsenate (DMMTA) is particularly relevant because of its high cytotoxicity and potential misidentification as nonregulated dimethylarsenate (DMA). Studying DMMTA uptake and flag leaf, grain, and husk accumulation in rice plants during grain filling, substantial dethiolation to DMA was observed with only 8.
View Article and Find Full Text PDFRice accumulates arsenic (As) when cultivated under flooded conditions in paddy soils threatening rice yield or its safety for human consumption, depending on As speciation. During long-term paddy use, repeated redox cycles systematically alter soil biogeochemistry and microbiology. In the present study, incubation experiments from a 2000-year-old paddy soil chronosequence revealed that As mobilization and speciation also change with paddy soil age.
View Article and Find Full Text PDFThioarsenates have recently been detected in rice and rice-based products, with particularly high contents in puffed rice cakes. Here, we show that puffing rice can cause almost complete transformation of dimethylarsenate (DMA) to dimethyldithioarsenate (DMDTA) and dimethylmonothioarsenate (DMMTA). Analysis of puffed rice cakes after 3 months of non-sealed storage at room temperature showed transformation of DMDTA mainly into DMMTA.
View Article and Find Full Text PDF