Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent congenital disorder of glycosylation, is an autosomal recessive disease caused by biallelic pathogenic variants in the PMM2 gene. There is no cure for this multisystemic syndrome. Some of the therapeutic approaches that are currently in development include mannose-1-phosphate replacement therapy, drug repurposing, and the use of small chemical molecules to correct folding defects.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
June 2024
PMM2-CDG (MIM # 212065), the most common congenital disorder of glycosylation, is caused by the deficiency of phosphomannomutase 2 (PMM2). It is a multisystemic disease of variable severity that particularly affects the nervous system; however, its molecular pathophysiology remains poorly understood. Currently, there is no effective treatment.
View Article and Find Full Text PDFDifferent strategies are being investigated for treating PMM2-CDG, the most common congenital disorder of glycosylation. The use of pharmacochaperones (PCs) is one of the most promising. The present work characterizes the expression, stability, and enzymatic properties of 15 previously described clinical variants of the PMM2 protein, four novel variants, the Pmm2 mouse variant p.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2020
Background: Mutations in the PMM2 gene cause phosphomannomutase 2 deficiency (PMM2; MIM# 212065), which manifests as a congenital disorder of glycosylation (PMM2-CDG). Mutant PMM2 leads to the reduced conversion of Man-6-P to Man-1-P, which results in low concentrations of guanosine 5'-diphospho-D-mannose, a nucleotide-activated sugar essential for the construction of protein oligosaccharide chains. To date the only therapeutic options are preventive and symptomatic.
View Article and Find Full Text PDFBiallelic variants of the gene DNAJC12, which encodes a cochaperone, were recently described in patients with hyperphenylalaninemia (HPA). This paper reports the retrospective genetic analysis of a cohort of unsolved cases of HPA. Biallelic variants of DNAJC12 were identified in 20 patients (generally neurologically asymptomatic) previously diagnosed with phenylalanine hydroxylase (PAH) deficiency (phenylketonuria [PKU]).
View Article and Find Full Text PDFPropionic acidemia (PA) is caused by mutations in the PCCA and PCCB genes, encoding α and β subunits, respectively, of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). Up to date, >200 pathogenic mutations have been identified, mostly missense defects. Genetic analysis in PA patients referred to the laboratory for the past 15 years identified 20 novel variants in the PCCA gene and 14 in the PCCB gene.
View Article and Find Full Text PDFPathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij), and limb-girdle congenital myasthenic syndrome (CMS) with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT), the protein encoded by DPAGT1, is an endoplasmic reticulum (ER)-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG.
View Article and Find Full Text PDFThe congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG), the most common N-glycosylation disorder, is a multisystem disease for which no effective treatment is available. The recent functional characterization of disease-causing mutations described in patients with PMM2-CDG led to the idea of a therapeutic strategy involving pharmacological chaperones (PC) to rescue PMM2 loss-of-function mutations. The present work describes the high-throughput screening, by differential scanning fluorimetry, of 10,000 low-molecular-weight compounds from a commercial library, to search for possible PCs for the enzyme PMM2.
View Article and Find Full Text PDFCongenital disorder of glycosylation type Ia (PMM2-CDG), the most common form of CDG, is caused by mutations in the PMM2 gene that reduce phosphomannomutase 2 (PMM2) activity. No curative treatment is available. The present work describes the functional analysis of nine human PMM2 mutant proteins frequently found in PMM2-CDG patients and also two murine Pmm2 mutations carried by the unique PMM2-CDG mouse model described to overcome embryonic lethality.
View Article and Find Full Text PDFProspectively enrolled phenylketonuria patients (n=485) participated in an international Phase II clinical trial to identify the prevalence of a therapeutic response to daily doses of sapropterin dihydrochloride (sapropterin, KUVAN(®)). Responsive patients were then enrolled in two subsequent Phase III clinical trials to examine safety, ability to reduce blood Phenylalanine levels, dosage (5-20 mg/kg/day) and response, and bioavailability of sapropterin. We combined phenotypic findings in the Phase II and III clinical trials to classify study-related responsiveness associated with specific alleles and genotypes identified in the patients.
View Article and Find Full Text PDFPhenylketonuria (PKU), a Mendelian autosomal recessive phenotype (OMIM 261600), is an inborn error of metabolism causing impaired postnatal cognitive development in the absence of treatment. We used the Pah(enu2/enu2) PKU mouse model to study oral enzyme substitution therapy with various chemically modified formulations of phenylalanine ammonia lyase (Av-p.C503S/p.
View Article and Find Full Text PDFDeficiency of phosphomannomutase (PMM2, MIM#601785) is the most common congenital disorder of glycosylation. Herein we report the genetic analysis of 22 Spanish PMM2 deficient patients and the functional analysis of 14 nucleotide changes in a prokaryotic expression system in order to elucidate their molecular pathogenesis. PMM2 activity assay revealed the presence of six protein changes with no enzymatic activities (p.
View Article and Find Full Text PDFAn increased reactive oxygen species (ROS) production and apoptosis rate have been associated with several disorders involved in cobalamin metabolism, including isolated methylmalonic aciduria (MMA) cblB type and MMA combined with homocystinuria (MMAHC) cblC type. Given the relevance of p38 and JNK kinases in stress-response, their activation in fibroblasts from a spectrum of patients (mut, cblA, cblB, cblC and cblE) was analyzed revealing an increased expression of the phosphorylated-forms, specially in cblB and cblC cell lines that presented the highest ROS and apoptosis levels. To gain further insight into the molecular mechanisms responsible for the enhanced apoptotic process observed in cblB and cblC fibroblasts, we evaluated the expression pattern of 84 apoptosis-related genes by quantitative real-time PCR.
View Article and Find Full Text PDFPhenylalanine ammonia lyase (PAL) has long been recognized as a potential enzyme replacement therapeutic for treatment of phenylketonuria. However, various strategies for the oral delivery of PAL have been complicated by the low intestinal pH, aggressive proteolytic digestion and circulation time in the GI tract. In this work, we report 3 strategies to address these challenges.
View Article and Find Full Text PDFPhenylketonuria (PKU) is a metabolic disorder, in which loss of phenylalanine hydroxylase activity results in neurotoxic levels of phenylalanine. We used the Pah(enu2/enu2) PKU mouse model in short- and long-term studies of enzyme substitution therapy with PEGylated phenylalanine ammonia lyase (PEG-PAL conjugates) from 4 different species. The most therapeutically effective PAL (Av, Anabaena variabilis) species was one without the highest specific activity, but with the highest stability; indicating the importance of protein stability in the development of effective protein therapeutics.
View Article and Find Full Text PDFProtein and peptide therapeutics are of growing importance as medical treatments but can frequently induce an immune response. This work describes the combination of complementary approaches to map the potential immunogenic regions of the yeast Rhodosporidium toruloides phenylalanine ammonia-lyase (PAL, EC 4.3.
View Article and Find Full Text PDFPhenylketonuria (PKU) is an autosomal recessive genetic disorder in which mutations in the phenylalanine-4-hydroxylase (PAH) gene result in an inactive enzyme (PAH, EC 1.14.16.
View Article and Find Full Text PDFStructure-based protein engineering coupled with chemical modifications (e.g., pegylation) is a powerful combination to significantly improve the development of proteins as therapeutic agents.
View Article and Find Full Text PDFPhenylketonuria (PKU) is a metabolic disorder due primarily to mutations in the PAH gene that impair both phenylalanine hydroxylase activity and disposal of l-phenylalanine from the normal diet. Excess phenylalanine is toxic to cognitive development and a low-phenylalanine diet prevents mental retardation, but it is a difficult therapeutic option. Previous studies with recombinant phenylalanine ammonia-lyase, PAL, demonstrated pharmacologic and physiologic proofs of principle for PAL as an alternative therapy for PKU but its immunogenicity was problematic.
View Article and Find Full Text PDFPhenylketonuria patients harboring a subset of phenylalanine hydroxylase (PAH) mutations have recently shown normalization of blood phenylalanine levels upon oral administration of the PAH cofactor tetrahydrobiopterin [(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4)]. Several hypotheses have been put forward to explain BH4 responsiveness, but the molecular basis for the corrective effect(s) of BH4 has not been understood. We have investigated the biochemical, kinetic, and structural changes associated with BH4-responsive mutations (F39L, I65T, R68S, H170D, E178G, V190A, R261Q, A300S, L308F, A313T, A373T, V388M, E390G, P407S, and Y414C).
View Article and Find Full Text PDFPhenylketonuria (PKU) is an inborn error of amino acid metabolism caused by phenylalanine hydroxylase (PAH) deficiency. Dietary treatment has been the cornerstone for controlling systemic phenylalanine (Phe) levels in PKU for the past 4 decades. Over the years, it has become clear that blood Phe concentration needs to be controlled for the life of the patient, a difficult task taking into consideration that the diet becomes very difficult to maintain.
View Article and Find Full Text PDFA surface-based laser desorption/ionization mass spectrometry assay that makes use of Desorption/Ionization on Silicon Mass Spectrometry (DIOS-MS) has been developed to monitor enzyme activity and enzyme inhibition. DIOS-MS has been used to characterize inhibitors from a library and then to monitor their activity against selected enzyme targets, including proteases, glycotransferase, and acetylcholinesterase. An automated DIOS-MS system was also used as a high-throughput screen for the activity of novel enzymes and enzyme inhibitors.
View Article and Find Full Text PDF