Publications by authors named "Alejandra Del Carmen Alonso"

Tau protein was discovered as a microtubule-associated protein nearly 50 years ago, and our understanding of tau has revolved around that role. Even with tau's rise to stardom as a central player in neurodegenerative disease, therapeutic efforts have largely been targeted toward cytoskeletal changes. While some studies hinted toward non-cytoskeletal roles for tau, it is only fairly recently that these ideas have begun to receive considerable attention.

View Article and Find Full Text PDF

The process of neurodegeneration in Alzheimer's disease has been associated with a disruption of insulin signaling cascade in neurons, and to insulin resistance. T2DM correlates with Alzheimer's disease, but mechanisms of interaction are unknown. We have developed a mouse model of tau induced neurodegeneration expressing pseudo-phosphorylated tau [Pathological Human Tau (PH-Tau)] in neurons.

View Article and Find Full Text PDF

An efficient nanomedical platform that can combine two-photon cell imaging, near infrared (NIR) light and pH dual responsive drug delivery, and photothermal treatment was successfully developed based on fluorescent porous carbon-nanocapsules (FPC-NCs, size ∼100 nm) with carbon dots (CDs) embedded in the shell. The stable, excitation wavelength (λex)-tunable and upconverted fluorescence from the CDs embedded in the porous carbon shell enable the FPC-NCs to serve as an excellent confocal and two-photon imaging contrast agent under the excitation of laser with a broad range of wavelength from ultraviolet (UV) light (405 nm) to NIR light (900 nm). The FPC-NCs demonstrate a very high loading capacity (1335 mg g(-1)) toward doxorubicin drug benefited from the hollow cavity structure, porous carbon shell, as well as the supramolecular π stacking and electrostatic interactions between the doxorubicin molecules and carbon shell.

View Article and Find Full Text PDF

A key characteristic of Alzheimer's disease and other tauopathies is the progressive accumulation of neurofibrillary tangles mainly composed of hyperphosphorylated tau protein. In the present study, we use transgenic Drosophila melanogaster as a model to analyze in vivo the effect of expressing pseudophosphorylated tau (S199E/T212E/T231E/S262E tau) on pathological human tau (PH-tau) and on the FTDP-17 mutant R406W (PH-tauR406W). We used two different inducers that produced different levels of tau expression.

View Article and Find Full Text PDF

Background: The present patent deals with the generation of peptides derived from the activity-dependent peptide and tau mimetic to study its effect on microtubule stability, its ability to bind to tubulin and MAPs, as well as promoting cell survival.

Objective: To analyze these peptides and their effects as potential therapeutic elements for neurodegenerative diseases.

Methods: We review the action of the peptides described by Gozes and collaborators and compare the effectiveness with those already reported in the literature for Alzheimer's disease.

View Article and Find Full Text PDF