Publications by authors named "Alejandra D' Antuono"

Tacaribe virus (TCRV) is the prototype of New World mammarenaviruses, a group that includes several members that cause hemorrhagic fevers in humans. The TCRV genome comprises two RNA segments, named S (small) and L (large). Both genomic segments contain noncoding regions (NCRs) at their 5' and 3' ends.

View Article and Find Full Text PDF

Although replication-defective human adenovirus type 5 (Ad5) vectors that express the capsid-encoding region of foot-and-mouth disease virus (FMDV) have been proven to be effective as vaccines in relevant species for several viral strains, the same result was not consistently achieved for the O1/Campos/Brazil/58 strain. In the present study, an optimization of the Ad5 system was explored and was proven to enhance the expression of FMDV capsid proteins and their association into virus-like particles (VLPs). Particularly, we engineered a novel Ad5 vector (Ad5[P]) which harbors the foreign transcription unit in a leftward orientation relative to the Ad5 genome, and drives the expression of the FMDV sequences from an optimized cytomegalovirus (CMV) enhancer-promoter as well.

View Article and Find Full Text PDF

Lassa virus (LASV) is the causative agent of Lassa fever, a human hemorrhagic disease associated with high mortality and morbidity rates, particularly prevalent in West Africa. Over the past few years, a significant amount of novel information has been provided on cellular factors that are determinant elements playing a role in arenavirus multiplication. In this review, we focus on host proteins that intersect with the initial steps of the LASV replication cycle: virus entry and genome replication.

View Article and Find Full Text PDF

Galectin-8 (Gal-8) is a mammalian β-galactoside-binding lectin, endowed with proinflammatory properties. Given its capacity to enhance antigen-specific immune responses in vivo, we investigated whether Gal-8 was also able to promote APC activation to sustain T cell activation after priming. Both endogenous [dendritic cells (DCs)] and bone marrow-derived DCs (BMDCs) treated with exogenous Gal-8 exhibited a mature phenotype characterized by increased MHC class II (MHCII), CD80, and CD86 surface expression.

View Article and Find Full Text PDF
Article Synopsis
  • Mammarenaviruses are a type of enveloped virus with a unique RNA genome that encodes important viral proteins, including the nucleocapsid and envelope glycoproteins.
  • The study focused on Tacaribe virus (TCRV) and examined how its mRNA translation is influenced by the structure of the untranslated regions (UTR) at the 5' and 3' ends, discovering that a proper cap structure at the 5' end and specific sequences in the UTRs significantly affect translation rates.
  • Findings suggest that TCRV uses a cap-dependent translation mechanism that is less reliant on traditional cellular factors, hinting at possible interactions with unknown factors during mRNA translation.
View Article and Find Full Text PDF
Article Synopsis
  • Ninety-three rectal swab samples from dogs suspected of canine parvovirus (CPV) were analyzed, revealing a 44% positivity rate for CPV infections using PCR.
  • Sequencing of these samples showed that the majority (90.2%) were of the CPV2c type, while a small percentage (9.8%) was identified as CPV2a, which has been absent since 2008.
  • The study indicates that CPV strains in different countries follow distinct evolutionary paths, highlighting the need for further epidemiological research to better understand CPV evolution across regions.
View Article and Find Full Text PDF

Unlabelled: The arenavirus nucleoprotein (NP) is the main protein component of viral nucleocapsids and is strictly required for viral genome replication mediated by the L polymerase. Homo-oligomerization of NP is presumed to play an important role in nucleocapsid assembly, albeit the underlying mechanism and the relevance of NP-NP interaction in nucleocapsid activity are still poorly understood. Here, we evaluate the contribution of the New World Tacaribe virus (TCRV) NP self-interaction to nucleocapsid functional activity.

View Article and Find Full Text PDF

The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines.

View Article and Find Full Text PDF

The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein.

View Article and Find Full Text PDF

Virus-like particles (VLPs) are promising vaccine candidates because they represent viral antigens in the authentic conformation of the virion and are therefore readily recognized by the immune system. As VLPs do not contain genetic material they are safer than attenuated virus vaccines. In this study, herpes simplex virus type 1 (HSV-1) amplicon vectors were constructed to coexpress the rotavirus (RV) structural genes VP2, VP6, and VP7 and were used as platforms to launch the production of RV-like particles (RVLPs) in vector-infected mammalian cells.

View Article and Find Full Text PDF

The arenavirus Z is a zinc-binding RING protein that has been implicated in multiple functions during the viral life cycle. These roles of Z involve interactions with viral and cellular proteins that remain incompletely understood. In this regard, Z inhibits viral RNA transcription and replication through direct interaction with the viral L polymerase.

View Article and Find Full Text PDF

The current frequency of Canine Parvovirus variants (CPV2a, CPV2b and CPV2c) in the Argentine dog population was investigated by PCR amplification of a 583 bp fragment in the VP2 gene. From a total of 79 rectal swab samples that have been submitted to our laboratory since 2008, 55 (69.6%) resulted positive and were further analyzed by direct DNA sequencing.

View Article and Find Full Text PDF

Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase.

View Article and Find Full Text PDF

HSV-1 amplicon vectors encoding heterologous antigens were capable to mediate in situ generation of protein synthesis and to generate a specific immune response to the corresponding antigens. In this study, foot-and-mouth disease (FMD) virus antigens were used to generate a genetic vaccine prototype. The amplicons were designed to provide a high safety profile as they do not express any HSV-1 genes when packaged using a helper virus-free system, and they are able to encapsidate several copies of the transgene or allow the simultaneous expression of different genes.

View Article and Find Full Text PDF

Monoclonal antibodies (MAbs) developed against different foot-and-mouth disease virus (FMDV) vaccine strains were extensively used to study any possible antigenic variations during vaccine production in Argentine facilities. Additionally, a typing ELISA using strain specific MAbs was developed to detect potential cross contaminations among FMDV strains in master and working seeds with high specificity and sensitivity and to confirm strains identity in formulated vaccines. This assay was carried out for the South American strains currently in use in production facilities in Argentina (A24/Cruzeiro, A/Argentina/01, O1/Campos and C3/Indaial) and for the strain O/Taiwan, produced only for export to Asia.

View Article and Find Full Text PDF

cDNA array technology was used to compare transcriptome profiles of Lotus japonicus roots inoculated with a Mesorhizobium loti wild-type and two mutant strains affected in cyclic beta(1-2) glucan synthesis (cgs) and in lipopolysaccharide synthesis (lpsbeta2). Expression of genes associated with the development of a fully functional nodule was significantly affected in plants inoculated with the cgs mutant. Array results also revealed that induction of marker genes for nodule development was delayed when plants were inoculated with the lpsbeta2 mutant.

View Article and Find Full Text PDF

The isolation, purification and analysis of the lipid A obtained from Mesorhizobium loti Ayac 1 BII strain is presented. Analysis of the carbohydrate moiety after acid hydrolysis by high-pH anion-exchange chromatography with pulse amperometric detection (HPAEC-PAD) showed the presence of glucosamine and galacturonic acid as the only sugar components. Gas chromatographic (GC) and GC/mass spectrometric (MS) analysis of the fatty acids revealed the presence of 3-OH-C12:0; 3-OH-C13:0; 3-OH-C20:0 and 27-OH-C28:0 among the major hydroxylated species.

View Article and Find Full Text PDF

The role of Mesorhizobium loti surface polysaccharides on the nodulation process is not yet fully understood. In this article, we describe the nodulation phenotype of mutants affected in the synthesis of lipopolysaccharide (LPS) and beta(1,2) cyclic glucan. M.

View Article and Find Full Text PDF

The phosphoglucomutase (pgm) gene codes for a key enzyme required for the formation of UDP-glucose and ADP-glucose, the sugar donors for the biosynthesis of glucose containing polysaccharides. A Mesorhizobium loti pgm null mutant obtained in this study contains an altered form of lipopolysaccharide (LPS), lacks exopolysaccharide (EPS), beta cyclic glucan, and glycogen and is unable to nodulate Lotus tenuis. The nonnodulating phenotype of the pgm mutant was not due to the absence of glycogen, since a glycogen synthase (glgA) null mutant effectively nodulates this legume.

View Article and Find Full Text PDF