Natural product ring distortion strategies have enabled rapid access to unique libraries of stereochemically complex compounds to explore new chemical space and increase our understanding of biological processes related to human disease. Herein is described the development of a ring-cleavage strategy using the indole alkaloids yohimbine, apovincamine, vinburnine, and reserpine that were reacted with a diversity of chloroformates paired with various alcohol/thiol nucleophiles to enable the rapid synthesis of 47 novel small molecules. Ring cleavage reactions of yohimbine and reserpine produced two diastereomeric products in moderate to excellent yields, whereas apovincamine and vinburnine produced a single diastereomeric product in significantly lower yields.
View Article and Find Full Text PDFTwenty-four biaryl tetrapeptide macrocycles were synthesized as an extension of our previous work. Two groups of compounds were constructed for establishing a structure-activity relationship: one having an aromatic substituent at α-position of one exo-peptide and the other group with a variation in the size of the lipophilic chain. Compound 13t had the best cytotoxicity from all the compounds tested (in a panel of six human cancer cell lines) and low toxicity on one healthy cell line.
View Article and Find Full Text PDFNon-Steroidal Anti-inflammatory Drugs (NSAIDs) are some of the most prescribed medications for pain but the incidence of adverse effects -especially during chronic treatment- points out the requirement of new analgesics. In this study, we showed an efficient two-steps synthesis of diphenylamine-containing dipeptides consisting of a multicomponent process followed by a Buchwald-Hartwig cross-coupling reaction. We prepared 16 diphenylamine derivatives and evaluated their in vivo anti-inflammatory activity through an ear edema model using 12-O-tetradecanoylpholbol-13-acetate.
View Article and Find Full Text PDFLeukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines.
View Article and Find Full Text PDFBacteria utilize multiple mechanisms that enable them to gain or acquire resistance to antibiotic therapies during the treatment of infections. In addition, bacteria form biofilms which are surface-attached communities of enriched populations containing persister cells encased within a protective extracellular matrix of biomolecules, leading to chronic and recurring antibiotic-tolerant infections. Antibiotic resistance and tolerance are major global problems that require innovative therapeutic strategies to address the challenges associated with pathogenic bacteria.
View Article and Find Full Text PDFSurvival of pancreatic cancer (PC) patient is poor due to lack of effective treatment modalities, which is partly due to the presence of dense desmoplasia that impedes the delivery of chemotherapeutics. Therefore, PC stroma-targeting therapies are expected to improve the efficacy of chemotherapeutics. However, evaluation of stromal-targeted therapies requires a culture system which includes components of both tumor stroma and parenchyma.
View Article and Find Full Text PDFA collection of fourteen diphenylamine macrocyclic derivatives containing a peptide chain with different substituents was synthesized using a protocol of two Ugi four component reactions (Ugi-4CR) and a Buchwald-Hartwig macrocyclization. Their anti-inflammatory effects were assayed with an ear edema model using 12-O-tetradecanoylphorbol-13-acetate, while the activity of myeloperoxidase was determined to evaluate the index of leukocyte infiltration. Compound 5e had an ID50 of 0.
View Article and Find Full Text PDFInflammation is widely reported as a main factor for the development of chronic diseases such as cancer, diabetes, and even metabolic syndrome. Thus, the search for novel anti-inflammatory compounds is required. Herein we describe the synthesis of a collection of peptidic pyrazinones by a convenient approach involving a multicomponent isocyanide-based reaction followed by a tandem deprotection/oxidative cyclization step.
View Article and Find Full Text PDFCancer continues to be a worldwide health problem. Certain macrocyclic molecules have become attractive therapeutic alternatives for this disease because of their efficacy and, frequently, their novel mechanisms of action. Herein, we report the synthesis of a series of 20-, 21-, and 22-membered macrocycles containing triazole and bis(aryl ether) moieties.
View Article and Find Full Text PDFFour series of pregnenolone derivatives having one or two α,β-unsaturated carbonyls and an ester moiety at C-21 or C-3 were synthetized to compare their cytotoxicity effect. The final compounds were evaluated on three human cancer cell lines: PC-3 (prostate cancer), MCF-7 (breast cancer), SKLU-1 (lung cancer) and a noncancerous cell line HGF (human gingival fibroblast). Two steroids with a 4-fluorinated benzoic acid ester at C-21 were the most active against lung cancer cell line with IC of 13.
View Article and Find Full Text PDFSynthesis of biaryl-containing macrocycles has been carried out through a four-step approach comprising two Ugi four component reactions and a Suzuki-Miyaura macrocyclization. This protocol allowed the synthesis of 12- and 14-membered macrocycles. Cytotoxic activity evaluation showed that some of the molecules were effective against leukemia, glioblastoma and lung cancer cell lines (IC = 4.
View Article and Find Full Text PDFHyperplasia of the prostate gland and prostate cancer have been associated with high levels of serum 5α-dihydrotestosterone. This steroid is formed from testosterone by the activity of the enzyme 5α-reductase (5α-R) present in the prostate. Thus, inhibition of this enzyme could be a goal for therapies to treat these diseases.
View Article and Find Full Text PDFA general methodology for the synthesis of different steroidal 17-spirolactones is described. This method uses lithium acetylide of ethyl propiolate as the three carbon synthon and the method was successfully applied for the process development of drospirenone.
View Article and Find Full Text PDFThe purpose of this work is to know the effect of flutamide and a novel synthetic steroid 3β-p-Iodobenzoyloxypregnan-4,16- diene-6,20-dione (IBP) on the levels of dopamine, 5-HIAA (5-hydroxyindole acetic acid), and some oxidative stress markers in animal model with Huntington disease. Thirty male Wistar rats divided in groups of 6 animals each were subjected to the following treatment: group A, 3-nitro propionic acid (3-NPA, as inducer of Huntington); group B, flutamide; group C, 3-NPA + flutamide; group D, IBP; and group E, 3-NPA + IBP. Treatment scheme for all groups were at 4 mg/kg/day administered intraperitoneally.
View Article and Find Full Text PDFIn this study we report the cytotoxic effect on human cancer cells of two series of novel progesterone derivatives; the first containing an aromatic ester (8a-e) or a carbamate functions both linked to C-3 (9a-e) on the pregn-4,16-diene-6,20-dione skeleton. In the second series, both functional groups (ester and carbamate) are bound to C-17 on the pregn-4,6-diene-3,20-dione scaffold (13a-e and 14a-e). The panel cancer cell lines used in this study were the following: PC-3 (human prostate cancer cell line), MCF-7 (human breast cancer cell line), HCT-15 (human colon cancer cell line) and J774 (noncancerous murine macrophages) for comparison.
View Article and Find Full Text PDF