Among non-coding RNAs, microRNAs are pivotal post-transcriptional regulators of gene expression in higher eukaryotes. Through a titration-based mechanism of interaction with their target RNAs, microRNAs can mediate a weak but pervasive form of RNA cross-regulation, as different endogenous RNAs can be effectively coupled by competing for microRNA binding (a phenomenon now known as "crosstalk"). Mathematical modeling has been proven of great help in unraveling many features of these competing endogenous RNA (ceRNA) interactions.
View Article and Find Full Text PDFLigand-receptor systems, covalent modification cycles, and transcriptional networks are the fundamental components of cell signaling and gene expression systems. While their behavior in reaching a steady-state regime under step-like stimulation is well understood, their response under repetitive stimulation, particularly at early time stages is poorly characterized. Yet, early-stage responses to external inputs are arguably as informative as late-stage ones.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2023
A powerful method to qualitatively analyze a 2D system is the use of nullclines, curves which separate regions of the plane where the sign of the time derivatives is constant, with their intersections corresponding to steady states. As a quick way to sketch the phase portrait of the system, they can be sufficient to understand the qualitative dynamics at play without integrating the differential equations. While it cannot be extended straightforwardly for dimensions higher than 2, sometimes the phase portrait can still be projected onto a 2-dimensional subspace, with some curves becoming pseudo-nullclines.
View Article and Find Full Text PDFIn this article, we consider a double phosphorylation cycle, a ubiquitous signaling component, having the ability to display bistability, a behavior strongly related to the existence of positive feedback loops. If this component is connected to other signaling elements, it very likely undergoes some sort of protein-protein interaction. In several cases, these interactions result in a non-explicit negative feedback effect, leading to interlinked positive and negative feedbacks.
View Article and Find Full Text PDFCovalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes.
View Article and Find Full Text PDFNegative cooperativity is a phenomenon in which the binding of a first ligand or substrate molecule decreases the rate of subsequent binding. This definition is not exclusive to ligand-receptor binding, it holds whenever two or more molecules undergo two successive binding events. Negative cooperativity turns the binding curve more graded and cannot be distinguished from two independent and different binding events based on equilibrium measurements only.
View Article and Find Full Text PDFBiological systems are spatially organized. This microscopic heterogeneity has been shown to produce emergent complex behaviors such as bistability. Even though the connection between spatiality and dynamic response is essential to understand biological output, its robustness and extent has not been sufficiently explored.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) can be maintained as homogeneous populations in the ground state of pluripotency. Release from this state in minimal conditions allows to obtain cells that resemble those of the early post-implantation epiblast, providing an important developmental model to study cell identity transitions. However, the cell cycle dynamics of mESCs in the ground state and during its dissolution have not been extensively studied.
View Article and Find Full Text PDFLigand-receptor systems, covalent modification cycles, and transcriptional networks are basic units of signaling systems and their steady-state properties are well understood. However, the behavior of such systems before steady-state is poorly characterized. Here, we analyzed the properties of input-output curves for each of these systems as they approach steady-state.
View Article and Find Full Text PDFUltrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity.
View Article and Find Full Text PDFBackground: Signal transduction is the process through which cells communicate with the external environment, interpret stimuli and respond to them. This mechanism is controlled by signaling cascades, which play the role of intracellular transmitter, being able to transmit biochemical information between cell membrane and nucleus. In theory as well as in practice, it has been shown that a perturbation can propagate upstream (and not only downstream) a cascade, by a mechanism known as retroactivity.
View Article and Find Full Text PDFCell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state.
View Article and Find Full Text PDFPrevious studies have demonstrated that double phosphorylation of a protein can lead to bistability if some conditions are fulfilled. It was also shown that the signaling behavior of a covalent modification cycle can be quantitatively and, more importantly, qualitatively modified when this cycle is coupled to a signaling pathway as opposed to being isolated. This property was named retroactivity.
View Article and Find Full Text PDFA reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII.
View Article and Find Full Text PDFIn biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles.
View Article and Find Full Text PDFBiological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load.
View Article and Find Full Text PDFBackground: It has been shown in experimental and theoretical work that covalently modified signaling cascades naturally exhibit bidirectional signal propagation via a phenomenon known as retroactivity. An important consequence of retroactivity, which arises due to enzyme sequestration in covalently modified signaling cascades, is that a downstream perturbation can produce a response in a component upstream of the perturbation without the need for explicit feedback connections. Retroactivity may, therefore, play an important role in the cellular response to a targeted therapy.
View Article and Find Full Text PDFUnderstanding the molecular alterations that confer cancer cells with motile, metastatic properties is needed to improve patient survival. Here, we report that p38γ motogen-activated protein kinase regulates breast cancer cell motility and metastasis, in part, by controlling expression of the metastasis-associated small GTPase RhoC. This p38γ-RhoC regulatory connection was mediated by a novel mechanism of modulating RhoC ubiquitination.
View Article and Find Full Text PDFSignaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters.
View Article and Find Full Text PDFIncreased levels of EZH2, a critical regulator of cellular memory, signal the presence of metastasis and poor outcome in breast cancer patients. High levels of EZH2 are associated with nuclear pleomorphism, lack of estrogen receptor expression, and decreased nuclear levels of BRCA1 tumor suppressor protein in invasive breast carcinomas. The mechanism by which EZH2 overexpression promotes the growth of poorly differentiated invasive carcinomas remains to be defined.
View Article and Find Full Text PDFPhosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
The complexity of biological systems is often prohibitive in testing specific hypotheses from first physical principles. To circumvent these limitations we used biological data to inform a mathematical model of breast cancer cell motility. Using this in silico model we were able to accurately assess the influence of actin cytoskeletal architecture on the motility of a genetically modified breast cancer cell line.
View Article and Find Full Text PDFWe used a model system of purified components to explore the effects of a downstream target on the signaling properties of a covalent modification cycle, an example of retroactivity. In the experimental system used, a bifunctional enzyme catalyzed the modification and demodification of its substrate protein, with both activities regulated by a small molecule stimulus. Here we examined how a downstream target for one or both forms of the substrate of the covalent modification cycle affected the steady-state output of the system, the sensitivity of the response to the stimulus, and the concentration of the stimulus required to provide the half-maximal response (S(50)).
View Article and Find Full Text PDFWe determine the calcium fluxes through inositol 1,4,5-trisphosphate receptor/channels underlying calcium puffs of Xenopus laevis oocytes using a simplified version of the algorithm of Ventura et al. An analysis of 130 puffs obtained with Fluo-4 indicates that Ca2+ release comes from a region of width approximately 450 nm, that the release duration is peaked around 18 s and that the underlying Ca2+ currents range between 0.12 and 0.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide, comprising approximately 50% of all malignancies in some developing nations. Our recent work identified protein kinase Cepsilon (PKCepsilon) as a critical and causative player in establishing an aggressive phenotype in HNSCC. In this study, we investigated the specificity and efficacy of HN1-PKCepsilon, a novel bifunctional cancer cell homing, PKCepsilon inhibitory peptide, as a treatment for HNSCC.
View Article and Find Full Text PDF