Publications by authors named "Alejandra Bruna"

The inter- and intra-tumor heterogeneity of triple negative breast cancers (TNBC), which is reflected in diverse drug responses, interplays with tumor evolution. Here, we developed a preclinical experimental and analytical framework using treatment-naive TNBC patient-derived tumor xenografts (PDTX) to test their predictive value in personalized cancer treatment approaches. Patients and their matched PDTX exhibited concordant drug responses to neoadjuvant therapy using two trial designs and dosing schedules.

View Article and Find Full Text PDF

Tumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy. Consequently, spatially resolved omics-level analyses are gaining traction. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization.

View Article and Find Full Text PDF

Vasculogenic mimicry (VM) describes the formation of pseudo blood vessels constructed of tumor cells that have acquired endothelial-like properties. VM channels endow the tumor with a tumor-derived vascular system that directly connects to host blood vessels, and their presence is generally associated with poor patient prognosis. Here we show that the transcription factor, Foxc2, promotes VM in diverse solid tumor types by driving ectopic expression of endothelial genes in tumor cells, a process that is stimulated by hypoxia.

View Article and Find Full Text PDF

Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2,000 breast tumors (777 estrogen receptor-negative, ER ) from four independent cohorts. RANK protein expression was more frequent in ER tumors, where it associated with poor outcome and poor response to chemotherapy.

View Article and Find Full Text PDF

The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge.

View Article and Find Full Text PDF

CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89).

View Article and Find Full Text PDF
Article Synopsis
  • PARP inhibitors (PARPi) are effective for treating HRR-deficient tumors but face resistance; combining them with WEE1 inhibitors (WEE1i) can enhance antitumor effects by increasing replication stress.
  • Research shows different resistance mechanisms for PARPi, with WEE1i and ATR inhibitors (ATRi) providing distinct strategies to overcome these challenges in breast and ovarian cancer models.
  • Targeting replication stress may help treat even tumors that aren't HRR-deficient, with ongoing clinical trials testing PARPi alongside WEE1i and ATRi to improve outcomes.
View Article and Find Full Text PDF

The Wnt cascade is a primordial developmental signaling pathway that plays a myriad of essential functions throughout development and adult homeostasis in virtually all animal species. Aberrant Wnt activity is implicated in embryonic and tissue morphogenesis defects, and several diseases, most notably cancer. The role of Wnt signaling in mammary gland development and breast cancer initiation, maintenance, and progression is far from being completely understood and is rather shrouded in controversy.

View Article and Find Full Text PDF

The cells with compromised BRCA1 or BRCA2 (BRCA1/2) function accumulate stalled replication forks, which leads to replication-associated DNA damage and genomic instability, a signature of BRCA1/2-mutated tumours. Targeted therapies against BRCA1/2-mutated tumours exploit this vulnerability by introducing additional DNA lesions. Because homologous recombination (HR) repair is abrogated in the absence of BRCA1 or BRCA2, these lesions are specifically lethal to tumour cells, but not to the healthy tissue.

View Article and Find Full Text PDF

(1) Background: Inter-tumour heterogeneity is one of cancer's most fundamental features. Patient stratification based on drug response prediction is hence needed for effective anti-cancer therapy. However, single-gene markers of response are rare and/or may fail to achieve a significant impact in the clinic.

View Article and Find Full Text PDF

DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites.

View Article and Find Full Text PDF

C nuclear spin hyperpolarization can increase the sensitivity of detection in an MRI experiment by more than 10,000-fold. C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized C label exchange between injected [1-C]pyruvate and the endogenous tumor lactate pool can be used clinically to assess tumor grade and response to treatment. We describe here an experimental protocol for using this technique in patient-derived and established cell line xenograft models of breast cancer in the mouse.

View Article and Find Full Text PDF

One goal of precision medicine is to tailor effective treatments to patients' specific molecular markers of disease. Here, we used mass cytometry to characterize the single-cell signaling landscapes of 62 breast cancer cell lines and five lines from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the growth factor EGF in the presence or absence of five kinase inhibitors.

View Article and Find Full Text PDF

Patient-derived preclinical models are now a core component of cancer research and have the ability to drastically improve the predictive power of preclinical therapeutic studies. However, their development and maintenance can be challenging, time consuming, and expensive. For neuroblastoma, a developmental malignancy of the neural crest, it is possible to establish patient-derived models as xenografts in mice and zebrafish, and as spheroids and organoids in vitro.

View Article and Find Full Text PDF

The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features.

View Article and Find Full Text PDF

Background: Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance.

View Article and Find Full Text PDF

PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers.

View Article and Find Full Text PDF

Response and resistance to anticancer therapies vary due to intertumor and intratumor heterogeneity. Here, we map differentially enriched G-quadruplex (G4) DNA structure-forming regions (∆G4Rs) in 22 breast cancer patient-derived tumor xenograft (PDTX) models. ∆G4Rs are associated with the promoters of highly amplified genes showing high expression, and with somatic single-nucleotide variants.

View Article and Find Full Text PDF
Article Synopsis
  • AZD5363, a pan-AKT inhibitor, shows promise for treating triple-negative and estrogen receptor-positive breast cancers, particularly in combination with paclitaxel and fulvestrant.
  • The study analyzed genetic and proteomic markers in patient-derived xenografts and samples to identify predictors of sensitivity and mechanisms of resistance to AZD5363.
  • Findings revealed specific mutations and absence of certain alterations linked to sensitivity, while resistance was associated with low pAKT levels and mechanisms like cyclin D1 overexpression, highlighting potential biomarker strategies for future treatment.
View Article and Find Full Text PDF

Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition.

View Article and Find Full Text PDF

Due to compromised homologous recombination (HR) repair, BRCA1- and BRCA2-mutated tumours accumulate DNA damage and genomic rearrangements conducive of tumour progression. To identify drugs that target specifically BRCA2-deficient cells, we screened a chemical library containing compounds in clinical use. The top hit was chlorambucil, a bifunctional alkylating agent used for the treatment of chronic lymphocytic leukaemia (CLL).

View Article and Find Full Text PDF

Taxanes are the mainstay of treatment in triple-negative breast cancer (TNBC), with and acquired resistance limiting patient's survival. To investigate the genetic basis of docetaxel resistance in TNBC, exome sequencing was performed on matched TNBC patient-derived xenografts (PDX) sensitive to docetaxel and their counterparts that developed resistance upon continuous drug exposure. Most mutations, small insertions/deletions, and copy number alterations detected in the initial TNBC human metastatic samples were maintained after serial passages in mice and emergence of resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the spread of breast cancer is complicated due to limited data on patients over long periods, especially for those with oestrogen-receptor positive types that can recur decades later.
  • A new statistical model has been developed to analyze different stages of breast cancer, predicting individual risks for recurrence by studying 3,240 patients, including 1,980 with molecular data.
  • The research identifies specific integrative subtypes that have a high recurrence rate and suggests improved patient stratification for better treatment strategies and clinical trials.
View Article and Find Full Text PDF