Global warming is forcing insect populations to move and adapt, triggering adaptive genetic responses. Thermal stress is known to alter gene expression, repressing the transcription of active genes, and inducing others, such as those encoding heat shock proteins. It has also been related to the activation of some specific transposable element (TE) families.
View Article and Find Full Text PDFInterspecific hybridization is often seen as a genomic stress that may lead to new gene expression patterns and deregulation of transposable elements (TEs). The understanding of expression changes in hybrids compared with parental species is essential to disentangle their putative role in speciation processes. However, to date we ignore the detailed mechanisms involved in genomic deregulation in hybrids.
View Article and Find Full Text PDFSince the migrations that led humans to colonize Earth, our species has faced frequent adaptive challenges that have left signatures in the landscape of genetic variation and that we can identify in our today's genomes. Here, we (i) perform an outlier approach on eight different population genetic statistics for 22 non-admixed human populations of the Phase III of the 1000 Genomes Project to detect selective sweeps at different historical ages, as well as events of recurrent positive selection in the human lineage; and (ii) create PopHumanScan, an online catalog that compiles and annotates all candidate regions under selection to facilitate their validation and thoroughly analysis. Well-known examples of human genetic adaptation published elsewhere are included in the catalog, as well as hundreds of other attractive candidates that will require further investigation.
View Article and Find Full Text PDF