Arctic fires can release large amounts of carbon from permafrost peatlands. Satellite observations reveal that fires burned ~4.7 million hectares in 2019 and 2020, accounting for 44% of the total burned area in the Siberian Arctic for the entire 1982-2020 period.
View Article and Find Full Text PDFClimatic warming has lengthened the photosynthetically active season in recent decades, thus affecting the functioning and biogeochemistry of ecosystems, the global carbon cycle and climate. Temperature response of carbon uptake phenology varies spatially and temporally, even within species, and daily total intensity of radiation may play a role. We empirically modelled the thresholds of temperature and radiation under which daily carbon uptake is constrained in the temperate and cold regions of the Northern Hemisphere, which include temperate forests, boreal forests, alpine and tundra biomes.
View Article and Find Full Text PDFSoil temperature remains isothermal at 0 °C and water shifts to a liquid phase during soil thawing. Vegetation may receive this process as a signal and a key to restore physiological activity. We aimed to show the relationship between the timing of soil thawing and the spring growth onset.
View Article and Find Full Text PDFThe African continent is facing one of the driest periods in the past three decades as well as continued deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we use a satellite dataset based on vegetation optical depth derived from low-frequency passive microwaves (L-VOD) to quantify annual aboveground biomass-carbon changes in sub-Saharan Africa between 2010 and 2016.
View Article and Find Full Text PDFThe rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incomplete understanding of how woody vegetation responds to socio-economic and environmental change.
View Article and Find Full Text PDFSevere droughts strongly impact photosynthesis (GPP), and satellite imagery has yet to demonstrate its ability to detect drought effects. Especially changes in vegetation functioning when vegetation state remains unaltered (no browning or defoliation) pose a challenge to satellite-derived indicators. We evaluated the performance of different satellite indicators to detect strong drought effects on GPP in a beech forest in France (Hesse), where vegetation state remained largely unaffected while GPP decreased substantially.
View Article and Find Full Text PDFAfter a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings.
View Article and Find Full Text PDF