Publications by authors named "Aleck W Jones"

The diverse clinical phenotypes of Wolf-Hirschhorn syndrome (WHS) are the result of haploinsufficiency of several genes, one of which, , encodes a protein of the mitochondrial inner membrane of uncertain function. Here, we show that LETM1 is associated with mitochondrial ribosomes, is required for mitochondrial DNA distribution and expression, and regulates the activity of an ancillary metabolic enzyme, pyruvate dehydrogenase. LETM1 deficiency in WHS alters mitochondrial morphology and DNA organization, as does substituting ketone bodies for glucose in control cells.

View Article and Find Full Text PDF

Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes.

View Article and Find Full Text PDF

Intracellular Ca(2+) signaling is involved in a series of physiological and pathological processes. In particular, an intimate crosstalk between bioenergetic metabolism and Ca(2+) homeostasis has been shown to determine cell fate in resting conditions as well as in response to stress. The endoplasmic reticulum and mitochondria represent key hubs of cellular metabolism and Ca(2+) signaling.

View Article and Find Full Text PDF

Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and cardiovascular disease.

View Article and Find Full Text PDF

The mitochondrial gateway to cell death is a frequent target for tumor suppressors, which largely utilize Bcl-2-dependent apoptotic pathways. Reporting in Science, Giorgi et al. (2010) now show that PML exerts its tumor suppressor function via a distinct mechanism: Ca²(+) transfer from the endoplasmic reticulum to the mitochondria.

View Article and Find Full Text PDF

Single-stranded DNA binding protein (SSB) plays important roles in DNA replication, recombination and repair through binding to single-stranded DNA. The mammalian mitochondrial SSB (mtSSB) is a bacterial type SSB. In vitro, mtSSB was shown to stimulate the activity of the mitochondrial replicative DNA helicase and polymerase, but its in vivo function has not been investigated in detail.

View Article and Find Full Text PDF

Several recent works show structurally and functionally dynamic contacts between mitochondria, the plasma membrane, the endoplasmic reticulum, and other subcellular organelles. Many cellular processes require proper cooperation between the plasma membrane, the nucleus and subcellular vesicular/tubular networks such as mitochondria and the endoplasmic reticulum. It has been suggested that such contacts are crucial for the synthesis and intracellular transport of phospholipids as well as for intracellular Ca(2+) homeostasis, controlling fundamental processes like motility and contraction, secretion, cell growth, proliferation and apoptosis.

View Article and Find Full Text PDF