Publications by authors named "Alecia K Gross"

Article Synopsis
  • The study investigates changes in the optic nerve head and retina of brain-dead organ donors after varying durations of elevated intraocular pressure (IOP).
  • Researchers examined optic and retinal tissues from three donors, revealing significant differences in protein and mRNA expression related to astrocytic markers and inflammation depending on the duration of IOP elevation.
  • Findings suggest that longer periods of elevated IOP lead to more pronounced changes in both the optic nerve and retina, and highlight the potential of using this model for further understanding the mechanotranscriptomic responses in eye conditions.
View Article and Find Full Text PDF

As signalling organelles, cilia regulate their G protein-coupled receptor content by ectocytosis, a process requiring localised actin dynamics to alter membrane shape. Photoreceptor outer segments comprise an expanse of folded membranes (discs) at the tip of highly-specialised connecting cilia, into which photosensitive GPCRs are concentrated. Discs are shed and remade daily.

View Article and Find Full Text PDF

NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown.

View Article and Find Full Text PDF

Unlabelled: NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how elevated intraocular pressure (IOP) affects ocular perfusion pressure (OPP), retinal blood flow, and electrical responses in the human eye, which was previously studied mainly in animal models.
  • Five eyes from brain-dead organ donors were tested using optical coherence tomography and electroretinography as IOP was increased to different levels, while blood pressure was monitored.
  • Results showed that higher IOP led to decreased retinal function and perfusion, especially with lower systemic blood pressure, indicating that IOP elevation has significant effects on retinal health in humans.
View Article and Find Full Text PDF

The maintenance of intraocular pressure (IOP) is critical to preserving the pristine optics required for vision. Disturbances in IOP can directly impact the optic nerve and retina, and inner retinal injury can occur following acute and chronic IOP elevation. There are a variety of animal models that have been developed to study the effects of acute and chronic elevation of IOP on the retina, retinal ganglion cell (RGC) morphology, intracellular signaling, gene expression changes, and survival.

View Article and Find Full Text PDF

Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is a hereditary disease of the retina that results in complete blindness. Currently, there are very few treatments for the disease and those that exist work only for the recessively inherited forms. To better understand the pathogenesis of RP, multiple mouse models have been generated bearing mutations found in human patients including the human Q344X rhodopsin knock-in mouse.

View Article and Find Full Text PDF

Purpose: To identify the role of the BBSome protein Bardet-Biedl syndrome 5 (BBS5) in photoreceptor function, protein trafficking, and structure using a congenital mutant mouse model.

Methods: Bbs5-/- mice (2 and 9 months old) were used to assess retinal function and morphology. Hematoxylin and eosin staining of retinal sections was performed to visualize histology.

View Article and Find Full Text PDF

Inherited retinal dystrophies (RDs) are heterogenous in many aspects including genes involved, age of onset, rate of progression, and treatments. While RDs are caused by a plethora of different mutations, all result in the same outcome of blindness. While treatments, both gene therapy-based and drug-based, have been developed to slow or halt disease progression and prevent further blindness, only a small handful of the forms of RDs have treatments available, which are primarily for recessively inherited forms.

View Article and Find Full Text PDF

The outer segment (OS) of rod photoreceptors consist of a highly modified primary cilium containing phototransduction machinery necessary for light detection. The delivery and organization of the phototransduction components within and along the cilium into the series of stacked, highly organized disks is critical for cell function and viability. How disks are formed within the cilium remains an area of active investigation.

View Article and Find Full Text PDF

The transition zone (TZ) is a domain at the base of the cilium that is involved in maintaining ciliary compartment-specific sensory and signaling activity by regulating cilia protein composition. Mutations in TZ proteins result in cilia dysfunction, often causing pleiotropic effects observed in a group of human diseases classified as ciliopathies. The purpose of this study is to describe the importance of the TZ component Meckel-Grüber syndrome 6 ( Mks6) in several organ systems and tissues regarding ciliogenesis and cilia maintenance using congenital and conditional mutant mouse models.

View Article and Find Full Text PDF

Purpose: Epigenetic and transcriptional mechanisms have been shown to contribute to long-lasting functional changes in adult neurons. The purpose of this study was to identify any such modifications in diseased retinal tissues from a mouse model of rhodopsin mutation-associated autosomal dominant retinitis pigmentosa (ADRP), Q344X, relative to age-matched wild-type (WT) controls.

Methods: We performed RNA sequencing (RNA-seq) at poly(A) selected RNA to profile the transcriptional patterns in 3-week-old ADRP mouse model rhodopsin Q344X compared to WT controls.

View Article and Find Full Text PDF

Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation.

View Article and Find Full Text PDF

Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level.

View Article and Find Full Text PDF

Precise vectorial transport of rhodopsin is essential for rod photoreceptor health and function. Mutations that truncate or extend the C terminus of rhodopsin disrupt this transport, and lead to retinal degeneration and blindness in human patients and in mouse models. Here we show that such mutations disrupt the binding of rhodopsin to the small GTPase rab11a.

View Article and Find Full Text PDF

For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X), cDNA encoding the enhanced green fluorescent protein (EGFP) at its 3' end, and a modified 5' untranslated region to reduce translation rate so that the mutant protein does not induce retinal degeneration. Mutations that eliminate the stop codon express a human rhodopsin-EGFP fusion protein (hRho-GFP), which can be readily detected by fluorescence microscopy.

View Article and Find Full Text PDF

Rhodopsin is trafficked to the rod outer segment of vertebrate rod cells with high fidelity. When rhodopsin transport is disrupted retinal photoreceptors apoptose, resulting in the blinding disease autosomal dominant retinitis pigmentosa. Herein, we introduce rhodopsin-photoactivatable GFP-1D4 (rhodopsin-paGFP-1D4) for the purposes of monitoring rhodopsin transport in living cells.

View Article and Find Full Text PDF

Purpose: To determine whether the age-regulating protein klotho was expressed in the retina and determine whether the absence of klotho affected retinal function.

Methods: Immunohistochemistry and qPCR of klotho knockout and wild-type mice were used to detect klotho expression in retina. Immunohistochemistry was used to probe for differences in expression of proteins important in synaptic function, retinal structure, and ionic flux.

View Article and Find Full Text PDF

Mutations in the rhodopsin gene cause approximately one-tenth of retinitis pigmentosa cases worldwide, and most result in endoplasmic reticulum retention and apoptosis. Other rhodopsin mutations cause receptor mislocalization, diminished/constitutive activity, or faulty protein-protein interactions. The purpose of this study was to test for mechanisms by which the autosomal dominant rhodopsin mutation Ter349Glu causes an early, rapid retinal degeneration in patients.

View Article and Find Full Text PDF

Rhodopsin is the dim-light photoreceptor responsible for initiation of the visual transduction cascade. In the dark its activity is very low, while light activation catalyzes the activation of its G-protein transducin. The first step in resetting rhodopsin and the phototransduction cascade involves the phosphorylation of light-active rhodopsin by rhodopsin kinase.

View Article and Find Full Text PDF

Retinitis pigmentosa is a retinal degeneration transmitted by varied modes of inheritance and affects approximately 1 in 4000 individuals. The photoreceptors of the outer retina, as well as the retinal pigmented epithelium which supports the outer retina metabolically and structurally, are the retinal regions most affected by the disorder. In several forms of retinitis pigmentosa, the mislocalization of the rod photoreceptor protein rhodopsin is thought to be a contributing factor underlying the pathophysiology seen in patients.

View Article and Find Full Text PDF

While there are over 100 distinct mutations in the rhodopsin gene that are found in patients with the degenerative disease autosomal dominant retinitis pigmentosa (ADRP), there are only four known mutations in the rhodopsin gene found in patients with the dysfunction congenital stationary night blindness (CSNB). CSNB patients have a much less severe phenotype than those with ADRP; the patients only lose rod function which affects their vision under dim light conditions, whereas their cone function remains relatively unchanged. The known rhodopsin CSNB mutations are found clustered around the site of retinal attachment.

View Article and Find Full Text PDF

Mutations in the Rhodopsin (Rho) gene can lead to autosomal dominant retinitis pigmentosa (RP) in humans. Transgenic mouse models with mutations in Rho have been developed to study the disease. However, it is difficult to know the source of the photoreceptor (PR) degeneration in these transgenic models because overexpression of wild type (WT) Rho alone can lead to PR degeneration.

View Article and Find Full Text PDF

Purpose: Mutations in RHO, PDE6B, and GNAT1 can lead to autosomal dominant congenital stationary night blindness (adCSNB). The study was conducted to identify the genetic defect in a large Swiss family affected with adCSNB and to investigate the pathogenic mechanism of the mutation.

Methods: Two affected cousins of a large Swiss family were examined clinically by standard methods: funduscopy, EOG, ERG, and dark adaptometry.

View Article and Find Full Text PDF