Publications by authors named "Alecci M"

This theoretical study presents the design and analytical/numerical optimization of novel dual-channel transverse fields radiofrequency (RF) surface coils for 1.5 T Magnetic Resonance Imaging (MRI). The research explores a planar setup with two channels on a row with aligned spatial orientation of the RF coils, aiming to solve a common design drawback of single-channel transverse field RF coils: the reduced Field Of View (FOV) along the direction of the RF field.

View Article and Find Full Text PDF

The chemistry of contrast agents (CAs) for magnetic resonance imaging (MRI) applications is an active area of research and, in recent work, it was shown that CA-based graphene oxide (GO) has valuable properties for biomedical uses. GO has a potential as MRI CAs thanks to several functionalities, like its ability to penetrate tissues and cell membranes, as well as easy coupling with therapeutic agents, therefore showing the potential for both a diagnostic and therapeutic role. In this study, we performed a thorough cleaning of the GO sample (synthesized using a modified Hummers method), minimizing the amount of residual manganese down to 73 ppm.

View Article and Find Full Text PDF

Introduction: Fast and accurate diagnosis of acute stroke is crucial to timely initiate reperfusion therapies. Conventional high-field (HF) MRI yields the highest accuracy in discriminating early ischaemia from haemorrhages and mimics. Rapid access to HF-MRI is often limited by contraindications or unavailability.

View Article and Find Full Text PDF

Radiofrequency (RF) coils are key components in Magnetic Resonance (MR) systems and can be categorized into volume and surface coils according to their shapes. Volume RF coils can generate a uniform field in a large central sample's region, while surface RF coils, usually smaller than volume coils, typically have a higher Signal-to-Noise Ratio (SNR) in a reduced Region Of Interest (ROI) close to the coil plane but a relatively poorer field homogeneity. Circular and square loops are the simplest and most used design for developing axial field surface RF coils.

View Article and Find Full Text PDF

We present the results of the calculations of the spin-lattice relaxation time of water in contact with graphene oxide by means of all-atom molecular dynamics simulations. We fully characterized the water-graphene oxide interaction through the calculation of the relaxation properties of bulk water and of the contact angle as a function of graphene oxide oxidation state and comparing them with the available experimental data. We then extended the calculation to investigate how graphene oxide alters the dynamical and relaxation properties of water in different conditions and concentrations.

View Article and Find Full Text PDF

The unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD) is one of the most commonly used in rodents. The anatomical, metabolic, and behavioral changes that occur after severe and stable 6-OHDA lesions have been extensively studied. Here, we investigated whether early motor behavioral deficits can be observed in the first week after the injection of 6-OHDA into the right substantia nigra pars compacta (SNc), and if they were indicative of the severity of the dopaminergic (DAergic) lesion in the SNc and the striatum at different time-points (day 1, 3, 5, 7, 14, 21).

View Article and Find Full Text PDF

The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g.

View Article and Find Full Text PDF

Objective: A systematic analytical approach to design Spiral Resonators (SRs), acting as distributed magnetic traps (DMTs), for the decoupling of concentric Double-Tuned (DT) RF coils suitable for Ultra-High Field (7 T) MRI is presented.

Methods: The design is based on small planar SRs placed in between the two RF loops (used for signal detection of the two nuclei of interest). We developed a general framework based on a fully analytical approach to estimate the mutual coupling between the RF coils and to provide design guidelines for the geometry and number of SRs to be employed.

View Article and Find Full Text PDF

The basal ganglia circuitry plays a crucial role in the sequential organization of behavior. Here we studied the behavioral structure of the animals after 21 days of 6-OHDA-induced lesion of the dopaminergic nigrostriatal system. Frequencies and durations of individual components of the behavioral repertoire were calculated; moreover, whether a temporal organization of the activity was present, it was investigated by using T-pattern analysis, a multivariate approach able to detect the real-time sequential organization of behavior.

View Article and Find Full Text PDF

The basal ganglia consist of a variety of subcortical nuclei engaged in motor control and executive functions, such as motor learning, behavioral control, and emotion. The striatum, a major basal ganglia component, is particularly useful for cognitive planning of purposive motor acts owing to its structural features and the neuronal circuitry established with the cerebral cortex. Recent data indicate emergent functions played by the striatum.

View Article and Find Full Text PDF

In breast cancer it has been proposed that the presence of cancer stem cells may drive tumor initiation, progression and recurrences. IL-8, up-regulated in breast cancer, and associated with poor prognosis, increases CSC self-renewal in cell line models. It signals via two cell surface receptors, CXCR1 and CXCR2.

View Article and Find Full Text PDF

Parkinson's disease is one of the most common neurologic disorder, affecting about 1-4% of persons older than 60 years. Among the proposed mechanisms of PD generation, free radical damage is believed to play a pivotal role in the development and/or progression of the disease. Recently, PPARs, a class of transcription factors involved in several pathways both in physiological and pathological conditions, have been linked by us and others to neurodegeneration.

View Article and Find Full Text PDF

Patients with Parkinson's disease show unbalanced capability to manage self-paced vs externally driven movements, or automatic-associated movements with respect to the intended voluntary movements. We studied the effect of a selective loss of dopaminergic terminals within the striatum and the execution of a well-learned set-shifting task as revealed using tyrosine hydroxylase immunoreactivity and magnetic resonance imaging in the rat. We found that, both in the externally cued condition, and in the externally-internally driven switching task, the cue-dependent constraints interfered with motor readiness in over training condition.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) represents the most severe type of glioma, the most common brain tumor. Their malignancy shows a relationship with an increased proliferation and a poorly organized tumor vascularization, an event that leads to inadequate blood supply, hypoxic areas and at last to the formation of necrotic areas, a feature of glioblastoma. Hypoxic/necrotic tumors are more resistant to chemotherapy and radiation therapies, thus it is crucial to formulate new therapeutic approaches that can render these tumors more sensitive to the action of conventional therapies.

View Article and Find Full Text PDF

Gliomas are histologically graded by cellularity, cytological atypia, necrosis, mitotic figures, and vascular proliferation, features associated with biologically aggressive behaviour. However, abundant evidence suggests the presence of unrecognized, clinically relevant subclasses of the diffuse gliomas, both in respect to their underlying molecular phenotype and their clinical response to therapy. It is well-known that patient prognosis and therapeutic decisions rely on accurate pathological grading.

View Article and Find Full Text PDF

MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides (1)H and (23)Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the (1)H frequency and a smaller co-planar loop tuned to the (23)Na frequency.

View Article and Find Full Text PDF

In this work we show the feasibility of sequential, co-registered fluorine and proton field-cycled Overhauser imaging at a detection field of 59 mT. To this purpose we have built an RF coil assembly comprising an Alderman-Grant resonator for EPR irradiation at 127.7 MHz (evolution field of 4.

View Article and Find Full Text PDF

Clinical MRI/MRS applications require radio frequency (RF) surface coils positioned at an arbitrary angle alpha with respect to B(0). In these experimental conditions the standard circular loop (CL) coil, producing an axial RF field, shows a large signal loss in the central region of interest (ROI). We demonstrate that transverse-field figure-of-eight (FO8) RF surface coils design are not subject to the same amount of signal loss in the central ROI as loop coils when their orientations are changed.

View Article and Find Full Text PDF

We present an open volume, high isolation, RF system suitable for pulsed NMR and EPR spectrometers with reduced dead time. It comprises a set of three RF surface coils disposed with mutually parallel RF fields and a double-channel receiver (RX). Theoretical and experimental results obtained with a prototype operating at about 100 MHz are reported.

View Article and Find Full Text PDF

An innovative algorithm for Magnetic Resonance Imaging (MRI) capable of demonstrating the source of various artefacts and driving the hardware and software acquisition process is presented. The algorithm is based on the application of the Bloch equations to the magnetization vector of each point of the simulated object, as requested by the instructions of the MRI pulse sequence. The collected raw data are then used to reconstruct the image of the object.

View Article and Find Full Text PDF

A post-processing noise suppression technique for biomedical MRI images is presented. The described procedure recovers both sharp edges and smooth surfaces from a given noisy MRI image; it does not blur the edges and does not introduce spikes or other artefacts. The fine details of the image are also preserved.

View Article and Find Full Text PDF

Objective: To define the extent of neuronal injury and loss in thalamic gray matter in patients with relapsing-remitting (RR) MS and to characterize how these neuronal pathologic changes are related to disease duration.

Methods: The authors studied 14 patients with RRMS (Expanded Disability Status Scale score, mean 3.25, range 2.

View Article and Find Full Text PDF

The use of detached endcaps for 3 T birdcage coils was investigated both theoretically and experimentally. Finite difference time domain analysis, along with workbench and MRI techniques, were used to map the radiofrequency (RF) B(1) distribution along the coil axis with and without an endcap. Without an endcap the measured B(1) value at the service end of the birdcage was only 45% of the value at the coil's center.

View Article and Find Full Text PDF

Radiofrequency (RF) shields that surround MRI transmit/receive coils should provide effective RF screening, without introducing unwanted eddy currents induced by gradient switching. Results are presented from a detailed examination of an effective RF shield design for a prototype transverse electromagnetic (TEM) resonator suitable for use at 3 Tesla. It was found that effective RF shielding and low eddy current sensitivity could be achieved by axial segmentation (gap width = 2.

View Article and Find Full Text PDF

Nuclear magnetic resonance imaging (MRI) provides excellent images of organs and is an essential diagnostic tool in the medical field. Electron paramagnetic resonance imaging (EPRI) is being increasingly used in the biomedical field because of recent hardware advances. We present the first images obtained with a low-field (35.

View Article and Find Full Text PDF