Background: Food animal AMR surveillance programs assess only small numbers of Escherichia coli (from 100 to 600 per animal class) nationally each year, severely limiting the evaluation of public health risk(s). Here we demonstrate an affordable approach for early detection of emerging resistance on a broad scale that can also accurately characterize spatial and temporal changes in resistance.
Methods: Caecal samples (n = 295) obtained from 10 meat poultry were screened using high-throughput robotics.
Pasteurella multocida causes a range of diseases in many host species throughout the world, including bovine respiratory disease (BRD) which is predominantly seen in feedlot cattle. This study assessed genetic diversity among 139 P. multocida isolates obtained from post-mortem lung swabs of BRD-affected feedlot cattle in four Australian states: New South Wales, Queensland, South Australia, and Victoria during 2014-2019.
View Article and Find Full Text PDFInfection with Pasteurella multocida represents a significant economic threat to Australian pig producers, yet our knowledge of its antimicrobial susceptibilities is lagging, and genomic characterization of P. multocida strains associated with porcine lower respiratory disease is internationally scarce. This study utilized high-throughput robotics to phenotypically and genetically characterize an industry-wide collection of 252 clinical P.
View Article and Find Full Text PDFBackground: A key component to control of antimicrobial resistance (AMR) is the surveillance of food animals. Currently, national programmes test only limited isolates per animal species per year, an approach tacitly assuming that heterogeneity of AMR across animal populations is negligible. If the latter assumption is incorrect then the risk to humans from AMR in the food chain is underestimated.
View Article and Find Full Text PDFBackground: Surveillance of antimicrobial resistance (AMR) is critical to reducing its wide-reaching impact. Its reliance on sample size invites solutions to longstanding constraints regarding scalability. A robotic platform (RASP) was developed for high-throughput AMR surveillance in accordance with internationally recognized standards (CLSI and ISO 20776-1:2019) and validated through a series of experiments.
View Article and Find Full Text PDFIn a structured survey of all major chicken-meat producers in Australia, we investigated the antimicrobial resistance (AMR) and genomic characteristics of ( = 108) and ( = 96) from cecal samples of chickens at slaughter ( = 200). The majority of the (63%) and (86.5%) samples were susceptible to all antimicrobials.
View Article and Find Full Text PDFObjectives: Antimicrobial resistance (AMR) to critically important antimicrobials (CIAs) amongst Gram-negative bacteria can feasibly be transferred amongst wildlife, humans and domestic animals. This study investigated the ecology, epidemiology and origins of CIA-resistant Escherichia coli carried by Australian silver gulls (Chroicocephalus novaehollandiae), a gregarious avian wildlife species that is a common inhabitant of coastal areas with high levels of human contact.
Methods: Sampling locations were widely dispersed around the perimeter of the Australian continent, with sites separated by up to 3500 km.
Streptococcus suis is a major zoonotic pathogen that causes severe disease in both humans and pigs. Australia's pig herd has been quarantined for over 30 years, however S. suis remains a significant cause of disease.
View Article and Find Full Text PDF