Explaining the predictions of machine learning models is of critical importance for integrating predictive modeling in drug discovery projects. We have generated a test system for predicting isoform selectivity of phosphoinositide 3-kinase (PI3K) inhibitors and systematically analyzed correct predictions of selective inhibitors using a new methodology termed MolAnchor, which is based on the "anchors" concept from explainable artificial intelligence. The approach is designed to generate chemically intuitive explanations of compound predictions.
View Article and Find Full Text PDFMost machine learning (ML) methods produce predictions that are hard or impossible to understand. The black box nature of predictive models obscures potential learning bias and makes it difficult to recognize and trace problems. Moreover, the inability to rationalize model decisions causes reluctance to accept predictions for experimental design.
View Article and Find Full Text PDFThe use of black box machine learning models whose decisions cannot be understood limits the acceptance of predictions in interdisciplinary research and camouflages artificial learning characteristics leading to predictions for other than anticipated reasons. Consequently, there is increasing interest in explainable artificial intelligence to rationalize predictions and uncover potential pitfalls. Among others, relevant approaches include feature attribution methods to identify molecular structures determining predictions and counterfactuals (CFs) or contrastive explanations.
View Article and Find Full Text PDFMost machine learning (ML) models produce black box predictions that are difficult, if not impossible, to understand. In pharmaceutical research, black box predictions work against the acceptance of ML models for guiding experimental work. Hence, there is increasing interest in approaches for explainable ML, which is a part of explainable artificial intelligence (XAI), to better understand prediction outcomes.
View Article and Find Full Text PDFIn drug discovery, compounds with well-defined activity against multiple targets (multitarget compounds, MT-CPDs) provide the basis for polypharmacology and are thus of high interest. Typically, MT-CPDs for polypharmacology have been discovered serendipitously. Therefore, over the past decade, computational approaches have also been adapted for the design of MT-CPDs or their identification via computational screening.
View Article and Find Full Text PDF