Publications by authors named "Aleardo Morelli"

Therapeutic antibodies must have "drug-like" properties. These include high affinity and specificity for the intended target, biological activity, and additional characteristics now known as "developability properties": long-term stability and resistance to aggregation when in solution, thermodynamic stability to prevent unfolding, high expression yields to facilitate manufacturing, low self-interaction, among others. Sequence-based liabilities may affect one or more of these characteristics.

View Article and Find Full Text PDF

The detailed analysis of the impact of deletions on proteins or nucleic acids can reveal important functional regions and lead to variants with improved macromolecular properties. We present a method to generate large libraries of mutants with deletions of varying length that are randomly distributed throughout a given gene. This technique facilitates the identification of crucial sequence regions in nucleic acids or proteins.

View Article and Find Full Text PDF

Artificial enzymes hold the potential to catalyze valuable reactions not observed in nature. One approach to build artificial enzymes introduces mutations into an existing protein scaffold to enable a new catalytic activity. This process commonly results in a simultaneous reduction of protein stability as an undesired side effect.

View Article and Find Full Text PDF

In the past decade, in vitro evolution techniques have been used to improve the performance or alter the activity of a number of different enzymes and have generated enzymes de novo. In this review, we provide an overview of the available in vitro methods, their application, and some general considerations for enzyme engineering in vitro. We discuss the advantages of in vitro over in vivo approaches and focus on ribosome display, mRNA display, DNA display technologies, and in vitro compartmentalization (IVC) methods.

View Article and Find Full Text PDF

Engineering functional protein scaffolds capable of carrying out chemical catalysis is a major challenge in enzyme design. Starting from a noncatalytic protein scaffold, we recently generated a new RNA ligase by in vitro directed evolution. This artificial enzyme lost its original fold and adopted an entirely new structure with substantially enhanced conformational dynamics, demonstrating that a primordial fold with suitable flexibility is sufficient to carry out enzymatic function.

View Article and Find Full Text PDF