Publications by authors named "Aldrin Rivas"

Denitrifying woodchip bioreactors (DBRs) are an established nitrate mitigation technology, but uncertainty remains on their viability for phosphorus (P) removal due to inconsistent source-sink behaviour in field trials. We investigated whether iron (Fe) redox cycling could be the missing link needed to explain P dynamics in these systems. A pilot-scale DBR (Aotearoa New Zealand) was monitored for the first two drainage seasons (2017-2018), with supplemental in-field measurements of reduced solutes (Fe, HS/HS) and their conjugate oxidised species (Fe/SO) made in 2021 to constrain within-reactor redox gradients.

View Article and Find Full Text PDF

Denitrifying bioreactors are an effective approach for removing nitrate from a variety of non-point wastewater sources, including agricultural tile drainage. However, compared to alternate mitigation approaches such as constructed wetlands, nitrate removal in bioreactors may decline with time and low temperature, resulting in poor long-term nitrate removal rates. To address the low nitrate removal rates in bioreactors, the addition of an external carbon source has been found to be an effective method for enhancing and maintaining nitrate removal rates.

View Article and Find Full Text PDF

Woodchip bioreactors are a practical, low-cost technology for reducing nitrate (NO) loads discharged from agriculture. Traditional methods of quantifying their performance in the field mostly rely on low-frequency, time-based (weekly to monthly sampling interval) or flow-weighted sample collection at the inlet and outlet, creating uncertainty in their performance and design by providing incomplete information on flow and water chemistry. To address this uncertainty, two field bioreactors were monitored in the US and New Zealand using high-frequency, multipoint sampling for in situ monitoring of NO-N concentrations.

View Article and Find Full Text PDF

Subsurface denitrification plays a key role in the reduction or 'attenuation' of nitrate contamination of groundwater and surface waters. We investigated subsurface denitrification characteristics in the vadose zone and shallow groundwater at four sites under pastoral farming in the Manawatū River catchment, located in the lower part of North Island, New Zealand. The denitrification potential of the vadose zone was determined by the laboratory incubation assays measuring the denitrifying enzyme activity (DEA) in soil samples collected from different soil horizons (up to 2.

View Article and Find Full Text PDF

A sound understanding of the effects of hydrogeological factors on loss, transport and transformation of farm nutrients is essential for predicting their impacts on ecosystem health of receiving waters. We assessed the potential of groundwater to attenuate nitrate through denitrification, and the distribution of this potential across the Tararua Groundwater Management Zone (GWMZ) in the Manawatu River catchment, New Zealand. We combined a number of methods in an unprecedented manner to confirm findings and obtain supporting evidence for the features that determine the subsurface denitrification characteristics.

View Article and Find Full Text PDF

To assess the vulnerability of water resources in the Bagmati River Basin in Nepal, this paper adopts an indicator-based approach wherein vulnerability is expressed as a function of water stress and adaptive capacity. Water stress encompasses indicators of water resources variation, scarcity, and exploitation and water pollution, whereas adaptive capacity covers indicators of natural, physical, human resource, and economic capacities. Based on the evaluation of eleven indicators, which were aggregated into eight vulnerability parameters, an increasingly stressful situation and lack of adaptive capacity became evident.

View Article and Find Full Text PDF