Publications by authors named "Aldobenedetto Zotti"

In this work, the effect of different mixing techniques on thermal and mechanical properties of graphene nanoplatelets (GNPs) and graphene nanofibers (GANFs) loaded epoxy nanocomposites was investigated. Three dispersion methods were employed: a high shear rate (HSR), ultrasonication (US) and the fluidized bed method (FBM). The optical microscopy has revealed that the most suitable dispersion, in terms of homogeneity and cluster size, is achieved by implementing the US and FBM techniques, leading to nanocomposites with the largest increase of glass transition temperature, as supported by the DMA analysis data.

View Article and Find Full Text PDF

The aim of this paper is to study the effect of strain rate on the compressive behavior of the highly cross-linked RTM6 epoxy resin used in advanced aerospace composites. Dynamic compression tests were performed using a split Hopkinson pressure bar, along with reference quasi-static compression tests, to cover a strain rate range from 0.001 to 1035 s.

View Article and Find Full Text PDF

The aim of this paper is to investigate the effect of strain rate and filler content on the compressive behavior of the aeronautical grade RTM6 epoxy-based nanocomposites. Silica nanoparticles with different sizes, weight concentrations and surface functionalization were used as fillers. Dynamic mechanical analysis was used to study the glass transition temperature and storage modulus of the nanocomposites.

View Article and Find Full Text PDF

This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water absorption.

View Article and Find Full Text PDF

Synthesized silica nanoparticles (SiO) were coated with a thin polydopamine (PDA) shell by a modified one-step procedure leading to PDA coated silica nanoparticles (SiO@PDA). Core-shell (CSNPs) characterization revealed 15 nm thickness of PDA shell surrounding the SiO core (~270 nm in diameter). Different weight percentages of CSNPs were employed as filler to enhance the final properties of an aeronautical epoxy resin (RTM6) commonly used as matrix to manufacture structural composites.

View Article and Find Full Text PDF

The effects of temperature and moisture on flexural and thermomechanical properties of neat and filled epoxy with both multiwall carbon nanotubes (CNT), carbon nanofibers (CNF), and their hybrid components were investigated. Two regimes of environmental aging were applied: Water absorption at 70 °C until equilibrium moisture content and thermal heating at 70 °C for the same time period. Three-point bending and dynamic mechanical tests were carried out for all samples before and after conditioning.

View Article and Find Full Text PDF

The effects of the addition of an aromatic hyperbranched polyester (AHBP) on thermal, mechanical, and fracture toughness properties of a thermosetting resin system were investigated. AHBP filler, synthesized by using a bulk poly-condensation reaction, reveals a glassy state at room temperature. Indeed, according to differential scanning calorimetry measurements, the glass transition temperature (T) of AHBP is 95 °C.

View Article and Find Full Text PDF

The following data describe the thermal properties of two different typologies of Hyperbranched Polymers (HBPs): the first one is a polyester (HBPG - Hyperbranched Polymer Glassy) with a glass transition temperature (T) higher than room temperature (∼90 °C) whereas the second one is a polyamide ester (HBPR - Hyperbranched Polymer Rubbery) characterized by T of about 20 °C. The nanocomposites manufactured using these HBPs as filler were characterized using Optical Microscopy and Differential Scanning Calorimetry. The raw data for the evaluation of fracture toughness properties are reported for the listed materials.

View Article and Find Full Text PDF

Synthesized silicon oxide (silica) nanoparticles were functionalized with a hyperbranched polymer (HBP) achieving a core/shell nanoparticles (CSNPs) morphology. CSNPs were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), and Thermogravimetric Analysis (TGA). A core diameter of about 250 nm with a 15 nm thick shell was revealed using TEM images.

View Article and Find Full Text PDF

In this work, we report the in-field demonstration of a liquefied petroleum gas monitoring system based on optical fiber technology. Long-period grating coated with a thin layer of atactic polystyrene (aPS) was employed as a gas sensor, and an array comprising two different fiber Bragg gratings was set for the monitoring of environmental conditions such as temperature and humidity. A custom package was developed for the sensors, ensuring their suitable installation and operation in harsh conditions.

View Article and Find Full Text PDF