Ti-6Al-4V selective dissolution occurs in vivo on orthopedic implants as the leading edge of a pitting corrosion attack. A gap persists in our fundamental understanding of selective dissolution and pre-clinical tests fail to reproduce this damage. While CoCrMo clinical use decreases, Ti-6Al-4V and the crevice geometries where corrosion can occur remain ubiquitous in implant design.
View Article and Find Full Text PDFAdditively manufactured (AM) Ti-6Al-4V devices are implanted with increasing frequency. While registry data report short-term success, a gap persists in our understanding of long-term AM Ti-6Al-4V corrosion behavior. Retrieval studies document β phase selective dissolution on conventionally manufactured Ti-6Al-4V devices.
View Article and Find Full Text PDFRetrieval studies in the past two decades show severe corrosion of titanium and its alloys in orthopedic implants. This damage is promoted by mechanically assisted crevice corrosion (MACC), particularly within modular titanium-titanium junctions. During MACC, titanium interfaces may be subject to negative potentials and reactive oxygen species (ROS), generated from cathodic activation and/or inflammation.
View Article and Find Full Text PDF