Publications by authors named "Aldo Ghisi"

Polycrystalline silicon is a brittle material, and its strength results are stochastically linked to microscale (or even nanoscale) defects, possibly dependent on the grain size and morphology. In this paper, we focus on the out-of-plane tensile strength of columnar polysilicon. The investigation has been carried out through a combination of a newly proposed setup for on-chip testing and finite element analyses to properly interpret the collected data.

View Article and Find Full Text PDF

A thermo-mechanical wafer-to-wafer bonding process is studied through experiments on the glass frit material and thermo-mechanical numerical simulations to evaluate the effect of the residual stresses on the wafer warpage. To experimentally characterize the material, confocal laser profilometry and scanning electron microscopy for surface observation, energy dispersive X-ray spectroscopy for microstructural investigation, and nanoindentation and die shear tests for the evaluation of mechanical properties are used. An average effective Young's modulus of 86.

View Article and Find Full Text PDF

A geometrical modification on silicon wafers before the bonding process, aimed to decrease (1) the residual stress caused by glass frit bonding, is proposed. Finite element modeling showed that (2) by introducing this modification, the wafer out-of-plane deflection was decreased by 34%. Moreover, (3) fabricated wafers with the proposed geometrical feature demonstrated an improvement for the (4) warpage with respect to the plain wafers.

View Article and Find Full Text PDF

Monte Carlo analyses on statistical volume elements allow quantifying the effect of polycrystalline morphology, in terms of grain topology and orientation, on the scattering of the elastic properties of polysilicon springs. The results are synthesized through statistical (lognormal) distributions depending on grain size and morphology: such statistical distributions are an accurate and manageable alternative to numerically-burdensome analyses. Together with this quantification of material property uncertainties, the effect of the scattering of the over-etch on the stiffness of the supporting springs can also be accounted for, by subdividing them into domains wherein statistical fluctuations are assumed not to exist.

View Article and Find Full Text PDF

In this work, we provide a numerical/experimental investigation of the micromechanics-induced scattered response of a polysilicon on-chip MEMS testing device, whose moving structure is constituted by a slender cantilever supporting a massive perforated plate. The geometry of the cantilever was specifically designed to emphasize the micromechanical effects, in compliance with the process constraints. To assess the effects of the variability of polysilicon morphology and of geometrical imperfections on the experimentally observed nonlinear sensor response, we adopt statistical Monte Carlo analyses resting on a coupled electromechanical finite element model of the device.

View Article and Find Full Text PDF

In this paper, the mechanical response of a commercial off-the-shelf, uni-axial polysilicon MEMS accelerometer subject to drops is numerically investigated. To speed up the calculations, a simplified physically-based (beams and plate), two degrees of freedom model of the movable parts of the sensor is adopted. The capability and the accuracy of the model are assessed against three-dimensional finite element simulations, and against outcomes of experiments on instrumented samples.

View Article and Find Full Text PDF

In this paper, an industrially-oriented two-scale approach is provided to model the drop-induced brittle failure of polysilicon MEMS sensors. The two length-scales here investigated are the package (macroscopic) and the sensor (mesoscopic) ones. Issues related to the polysilicon morphology at the micro-scale are disregarded; an upscaled homogenized constitutive law, able to describe the brittle cracking of silicon, is instead adopted at the meso-scale.

View Article and Find Full Text PDF

Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

View Article and Find Full Text PDF

The effect of accidental drops on MEMS sensors are examined within the frame-work of a multi-scale finite element approach. With specific reference to a polysilicon MEMSaccelerometer supported by a naked die, the analysis is decoupled into macro-scale (at dielength-scale) and meso-scale (at MEMS length-scale) simulations, accounting for the verysmall inertial contribution of the sensor to the overall dynamics of the device. Macro-scaleanalyses are adopted to get insights into the link between shock waves caused by the impactagainst a target surface and propagating inside the die, and the displacement/acceleration his-tories at the MEMS anchor points.

View Article and Find Full Text PDF