Publications by authors named "Aldo Ceriotti"

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop.

View Article and Find Full Text PDF

Acrylamide, a suspected human carcinogen, is generated during food processing at high temperatures in the Maillard reaction, which involves reducing sugars and free asparagine. In wheat derivatives, free asparagine represents a key factor in acrylamide formation. Free asparagine levels in the grain of different wheat genotypes has been investigated in recent studies, but little is known about elite varieties that are cultivated in Italy.

View Article and Find Full Text PDF

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo.

View Article and Find Full Text PDF

The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern.

View Article and Find Full Text PDF

Wheat ( spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer ( ssp.

View Article and Find Full Text PDF

The protein disulfide isomerase (PDI) family comprises a wide set of enzymes mainly involved in thiol-disulfide exchange reactions in the endoplasmic reticulum. Class A PDIs (PDI-A) constitute the smallest members of the family, consisting of a single thioredoxin (TRX) module without any additional domains. To date, their catalytic activity and cellular function are still poorly understood.

View Article and Find Full Text PDF

The time course of biosynthesis and accumulation of storage proteins in developing grains of durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.

View Article and Find Full Text PDF

Background: The big challenge in any anti-tumor therapeutic approach is represented by the development of drugs selectively acting on the target with limited side effects, that exploit the unique characteristics of malignant cells. The urokinase (urokinase-type plasminogen activator, uPA) and its receptor uPAR have been identified as preferential target candidates since they play a key role in the evolution of neoplasms and are associated with neoplasm aggressiveness and poor clinical outcome in several different tumor types.

Results: To selectively target uPAR over-expressing cancer cells, we prepared a set of chimeric proteins (ATF-SAP) formed by the human amino terminal fragments (ATF) of uPA and the plant ribosome inactivating protein saporin (SAP).

View Article and Find Full Text PDF

Background: Antibodies raised against selected antigens over-expressed at the cell surface of malignant cells have been chemically conjugated to protein toxin domains to obtain immunotoxins (ITs) able to selectively kill cancer cells. Since latest generation immunotoxins are composed of a toxic domain genetically fused to antibody fragment(s) which confer on the IT target selective specificity, we rescued from the hydridoma 4KB128, a recombinant single-chain variable fragment (scFv) targeting CD22, a marker antigen expressed by B-lineage leukaemias and lymphomas. We constructed several ITs using two enzymatic toxins both able to block protein translation, one of bacterial origin (a truncated version of Pseudomonas exotoxin A, PE40) endowed with EF-2 ADP-ribosylation activity, the other being the plant ribosome-inactivating protein saporin, able to specifically depurinate 23/26/28S ribosomal RNA.

View Article and Find Full Text PDF

Background: Wheat glutenin polymers are made up of two main subunit types, the high- (HMW-GS) and low- (LMW-GS) molecular weight subunits. These latter are represented by heterogeneous proteins. The most common, based on the first amino acid of the mature sequence, are known as LMW-m and LMW-s types.

View Article and Find Full Text PDF

The glutenin fraction of wheat storage proteins consists of large polymers in which high- and low-molecular-weight subunits are connected by inter-chain disulfide bonds. We found that assembly of a low-molecular-weight glutenin subunit in the endoplasmic reticulum is a rapid process that leads to accumulation of various oligomeric forms, and that this assembly is sensitive to perturbation of the cellular redox environment. In endoplasmic reticulum-derived microsomes, low-molecular-weight glutenin subunits are subjected to hyper-polymerization, indicating that cytosolic factors play an important role in limiting polymer size.

View Article and Find Full Text PDF

The fate of the type I ribosome-inactivating protein (RIP) saporin when initially targeted to the endoplasmic reticulum (ER) in tobacco protoplasts has been examined. We find that saporin expression causes a marked decrease in protein synthesis, indicating that a fraction of the toxin reaches the cytosol and inactivates tobacco ribosomes. We determined that saporin is largely secreted but some is retained intracellularly, most likely in a vacuolar compartment, thus behaving very differently from the prototype RIP ricin A chain.

View Article and Find Full Text PDF

Most of the targeting moieties, such as antibody fragments or growth factor domains, used to construct targeted toxins for anticancer therapy derive from secretory proteins. These normally fold in the oxidative environment of the endoplasmic reticulum, and hence their folding in bacterial cells can be quite inefficient. For instance, only low amounts of properly folded antimetastatic chimera constituted by the amino-terminal fragment of human urokinase (ATF) fused to the plant ribosome-inactivating protein saporin could be recovered.

View Article and Find Full Text PDF

Wheat (Triticum spp.) grains contain large protein polymers constituted by two main classes of polypeptides: the high-molecular-weight glutenin subunits and the low-molecular-weight glutenin subunits (LMW-GS). These polymers are among the largest protein molecules known in nature and are the main determinants of the superior technological properties of wheat flours.

View Article and Find Full Text PDF
Article Synopsis
  • The B chain of ricin was introduced into tobacco protoplasts and degraded over time in the endoplasmic reticulum.
  • This degradation did not occur in the vacuoles or during the secretion of the ricin B chain.
  • Evidence suggests that, unlike the ricin A chain which is degraded in the cytosol, most of the ricin B chain is broken down in the secretory pathway.
View Article and Find Full Text PDF

When the catalytic A subunits of the castor bean toxins ricin and Ricinus communis agglutinin (denoted as RTA and RCA A, respectively) are delivered into the endoplasmic reticulum (ER) of tobacco protoplasts, they become substrates for ER-associated protein degradation (ERAD). As such, these orphan polypeptides are retro-translocated to the cytosol, where a significant proportion of each protein is degraded by proteasomes. Here we begin to characterize the ERAD pathway in plant cells, showing that retro-translocation of these lysine-deficient glycoproteins requires the ATPase activity of cytosolic CDC48.

View Article and Find Full Text PDF

The oocytes of the South African clawed frog Xenopus laevis have been widely used as a reliable system for the expression and characterization of different types of proteins, including ion channels and membrane receptors. The large size and resilience of these oocytes make them easy to handle and to microinject with different molecules such as natural mRNAs, cRNAs, and antibodies. A variety of methods can then be used to monitor the expression of the proteins encoded by the microinjected mRNA/cRNA, and to perform a functional characterization of the heterologous polypeptides.

View Article and Find Full Text PDF

The plant toxin ricin is synthesized in castor bean seeds as an endoplasmic reticulum (ER)-targeted precursor. Removal of the signal peptide generates proricin in which the mature A- and B-chains are joined by an intervening propeptide and a 9-residue propeptide persists at the N terminus. The two propeptides are ultimately removed in protein storage vacuoles, where ricin accumulates.

View Article and Find Full Text PDF
Article Synopsis
  • Several protein toxins, like ricin, enter cells via endocytosis and use the Golgi complex to reach the endoplasmic reticulum (ER) for delivery to their targets, while others, like cholera toxin, possess specific sequences for efficient transport.
  • The study focused on saporin, a plant ribosome-inactivating protein, revealing that it follows a Golgi-independent pathway to reach the cytosol, as its toxicity isn't affected by inhibitors that target the Golgi or require an acidic environment.
  • Unlike ricin, saporin was not found in the Golgi complex but showed some overlap with late endosome/lysosome markers, indicating it utilizes a different intracellular route compared to other toxins that depend on Gol
View Article and Find Full Text PDF

Proteins that fail to fold in the endoplasmic reticulum (ER) or cannot find a pattern for assembly are often disposed of by a process named ER-associated degradation (ERAD), which involves transport of the substrate protein across the ER membrane (dislocation) followed by rapid proteasome-mediated proteolysis. Different ERAD substrates have been shown to be ubiquitinated during or soon after dislocation, and an active ubiquitination machinery has been found to be required for the dislocation of certain defective proteins. We have previously shown that, when expressed in tobacco (Nicotiana tabacum) protoplasts, the A chain of the heterodimeric toxin ricin is degraded by a pathway that closely resembles ERAD but is characterized by an unusual uncoupling between the dislocation and the degradation steps.

View Article and Find Full Text PDF

We have studied the transport of proricin and pro2S albumin to the protein storage vacuoles of developing castor bean (Ricinus communis L.) endosperm. Immunoelectron microscopy and cell fractionation reveal that both proteins travel through the Golgi apparatus and co-localize throughout their route to the storage vacuole.

View Article and Find Full Text PDF

Ricin is synthesised as an ER-targeted precursor containing an enzymatic A chain and a galactose-binding B chain separated by a 12-amino acid linker propeptide. This internal propeptide is known to contain a sequence-specific vacuolar sorting signal whose functionality depends on the presence of an isoleucine residue. Conversion of this isoleucine to glycine completely abolished vacuolar targeting of proricin and led to its secretion.

View Article and Find Full Text PDF