Chemical systems displaying directional motions are relevant to the operation of artificial molecular machines. Herein we present the functioning of a molecule capable of transporting a cyclic species in a preferential direction. Our system is based on a linear, non-symmetric, positively charged molecule.
View Article and Find Full Text PDFCoordinated motions are essential in the operation of molecular machines. This feature can be achieved by landscaping the energy surface along the movement coordinates. Herein, we present an approach of using a single stimulus to modify the free energy curve describing the threading and shuttling of a ring along a linear molecule.
View Article and Find Full Text PDFA pseudo-rotaxane is a host-guest complex composed of a linear molecule encircled by a macrocyclic ring. These complexes can be assembled by sliding the host over the guest terminal groups. If there is a close match between the molecular volume of the flanking groups on the guest and the cavity size of the macrocycle, the slipping might occur slowly or even become completely hindered.
View Article and Find Full Text PDFThe protonation of a cyclic tertiary amine, integrated into the structure of a dumbbell-shaped guest molecule, accelerates the sliding of the guest through the cavity of a crown ether macrocycle to yield a stable pseudo-rotaxane complex. The use of an amine with the appropriate ring size followed by a proton transfer reaction leads to the formation of an interlocked rotaxane species.
View Article and Find Full Text PDF