Vertebrates sniff to control the odor samples that enter their nose. These samples can not only help identify odorous objects, but also locations and events. However, there is no receptor for place or time.
View Article and Find Full Text PDFThe goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning.
View Article and Find Full Text PDFA fundamental task faced by the auditory system is the detection of events that are signaled by fluctuations in sound. Spiking in auditory cortical neurons is critical for sound detection, but the causal roles of specific cell types and circuits are still mostly unknown. Here we tested the role of a genetically identified population of layer 4 auditory cortical neurons in sound detection.
View Article and Find Full Text PDFJ Alzheimers Dis
October 2022
Background: Effective treatment of Alzheimer's disease (AD) will hinge on early detection. This has led to the search for early biomarkers that use non-invasive testing. One possible early biomarker is auditory temporal processing deficits, which reflect central auditory pathway dysfunction and precede cognitive and memory declines in AD.
View Article and Find Full Text PDFAttention is a necessary component in many forms of human and animal learning. Numerous studies have described how attention and memory interact when confronted with a choice point during skill learning. In both animal and human studies, pathways have been found that connect the executive and orienting networks of attention to the hippocampus.
View Article and Find Full Text PDFWhile connectivity within sensory cortical circuits has been studied extensively, how these connections contribute to perception and behavior is not well understood. Here we tested the role of a circuit between layers 3 and 5 of auditory cortex in sound detection. We measured sound detection using a common variant of pre-pulse inhibition of the acoustic startle response, in which a silent gap in background noise acts as a cue that attenuates startle.
View Article and Find Full Text PDFNeurobiol Aging
October 2020
Early detection will be crucial for effective treatment or prevention of Alzheimer's disease. The identification and validation of early, noninvasive biomarkers is therefore key to avoiding the most devastating aspects of Alzheimer's disease. Measures of central auditory processing such as gap detection have recently emerged as potential biomarkers in both human patients and the 5XFAD mouse model of Alzheimer's disease.
View Article and Find Full Text PDFAuditory cortex (AC) is necessary for the detection of brief gaps in ongoing sounds, but not for the detection of longer gaps or other stimuli such as tones or noise. It remains unclear why this is so, and what is special about brief gaps in particular. Here, we used both optogenetic suppression and conventional lesions to show that the cortical dependence of brief gap detection hinges specifically on gap termination.
View Article and Find Full Text PDFSpeech evokes robust activity in auditory cortex, which contains information over a wide range of spatial and temporal scales. It remains unclear which components of these neural representations are causally involved in the perception and processing of speech sounds. Here we compared the relative importance of early and late speech-evoked activity for consonant discrimination.
View Article and Find Full Text PDFThe auditory cortex is topographically organized for sound frequency and contains highly selective frequency-tuned neurons, yet the role of auditory cortex in the perception of sound frequency remains unclear. Lesion studies have shown that auditory cortex is not essential for frequency discrimination of pure tones. However, transient pharmacological inactivation has been reported to impair frequency discrimination.
View Article and Find Full Text PDFHuman skill learning is marked by a gradual decrease in reaction time (RT) and errors as the skill is acquired. To better understand the influence of brain areas thought to be involved in skill learning, we trained mice to associate visual-spatial cues with specific motor behaviors for a water reward. Task acquisition occurred over weeks and performance approximated a power function as often found with human skill learning.
View Article and Find Full Text PDFAlzheimer's patients show auditory temporal processing deficits very early in disease progression, before the onset of major cognitive impairments. In addition to potentially contributing to speech perception and communication deficits in patients, this also represents a potential early biomarker for Alzheimer's. For this reason, tests of temporal processing such as gap detection have been proposed as an early diagnosis tool.
View Article and Find Full Text PDFRecent reports have begun to elucidate mechanisms by which learning and experience produce white matter changes in the brain. We previously reported changes in white matter surrounding the anterior cingulate cortex in humans after 2-4 weeks of meditation training. We further found that low-frequency optogenetic stimulation of the anterior cingulate in mice increased time spent in the light in a light/dark box paradigm, suggesting decreased anxiety similar to what is observed following meditation training.
View Article and Find Full Text PDFExcitation is balanced by inhibition to cortical neurons across a wide range of conditions. To understand how this relationship is maintained, we broadly suppressed the activity of parvalbumin-expressing (PV) inhibitory neurons and asked how this affected the balance of excitation and inhibition throughout auditory cortex. Activating archaerhodopsin in PV neurons effectively suppressed them in layer 4.
View Article and Find Full Text PDFThe spatial receptive fields of neurons in medial entorhinal cortex layer II (MECII) and in the hippocampus suggest general and environment-specific maps of space, respectively. However, the relationship between these receptive fields remains unclear. We reversibly manipulated the activity of MECII neurons via chemogenetic receptors and compared the changes in downstream hippocampal place cells to those of neurons in MEC.
View Article and Find Full Text PDFMeditation training induces changes at both the behavioral and neural levels. A month of meditation training can reduce self-reported anxiety and other dimensions of negative affect. It also can change white matter as measured by diffusion tensor imaging and increase resting-state midline frontal theta activity.
View Article and Find Full Text PDFWe appreciate the many comments we received on our discussion paper and believe that they reflect a recognition of the importance of this topic worldwide. We point out in this reply that there appears to be a confusion between the role of oscillations in creating white matter and other functions of oscillations in communicating between neural areas during task performance or at rest. We also discuss some mechanisms other than the enhancement of white matter that must influence reaction time.
View Article and Find Full Text PDFWhy does training on a task reduce the reaction time for performing it? New research points to changes in white matter pathways as one likely mechanism. These pathways connect remote brain areas involved in performing the task. Genetic variations may be involved in individual differences in the extent of this improvement.
View Article and Find Full Text PDFAuditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds.
View Article and Find Full Text PDFBackground: Understanding speech in the presence of background noise often becomes increasingly difficult with age. These age-related speech processing deficits reflect impairments in temporal acuity. Gap detection is a model for temporal acuity in speech processing in which a gap inserted in white noise acts as a cue that attenuates subsequent startle responses.
View Article and Find Full Text PDFAs first demonstrated in the patient H.M., the hippocampus is critically involved in forming episodic memories, the recall of "what" happened "where" and "when.
View Article and Find Full Text PDFThe enormous potential of modern molecular neuroanatomical tools lies in their ability to determine the precise connectivity of the neuronal cell types comprising the innate circuitry of the brain. We used transgenically targeted viral tracing to identify the monosynaptic inputs to the projection neurons of layer II of medial entorhinal cortex (MEC-LII) in mice. These neurons are not only major inputs to the hippocampus, the structure most clearly implicated in learning and memory, they also are "grid cells.
View Article and Find Full Text PDFDamage to the hippocampus, as first demonstrated with patient HM, results in a profound anterograde and temporally-graded retrograde amnesia. The observation that older memories could still be consciously recollected led to the proposal that, over time, information initially processed in the hippocampus is stored in a distributed cortical network. The anterior cingulate cortex (ACC) has recently been implicated in this process.
View Article and Find Full Text PDFDamage to the hippocampal formation results in a profound temporally graded retrograde amnesia, implying that it is necessary for memory acquisition but not its long-term storage. It is therefore thought that memories are transferred from the hippocampus to the cortex for long-term storage in a process called systems consolidation (Dudai and Morris, 2000). Where in the cortex this occurs remains an open question.
View Article and Find Full Text PDFUnderstanding how neural circuits work requires a detailed knowledge of cellular-level connectivity. Our current understanding of neural circuitry is limited by the constraints of existing tools for transsynaptic tracing. Some of the most intractable problems are a lack of cellular specificity of uptake, transport across multiple synaptic steps conflating direct and indirect inputs, and poor labeling of minor inputs.
View Article and Find Full Text PDF