Publications by authors named "Aldinucci A"

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic and so it is crucial the right evaluation of viral infection. According to the Centers for Disease Control and Prevention (CDC), the Real-Time Reverse Transcription PCR (RT-PCR) in respiratory samples is the gold standard for confirming the disease. However, it has practical limitations as time-consuming procedures and a high rate of false-negative results.

View Article and Find Full Text PDF

Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease in which pathogenesis T cells have a major role. Despite the unknown etiology, several risk factors have been described, including a strong association with human leukocyte antigen (HLA) genes. Recent findings showed that HLA class I-G (HLA-G) may be tolerogenic in MS, but further insights are required.

View Article and Find Full Text PDF

Background: T cells play a key role in the pathogenesis of multiple sclerosis (MS), a chronic, inflammatory, demyelinating disease of the central nervous system (CNS). Although several studies recently investigated the T-cell receptor (TCR) repertoire in cerebrospinal fluid (CSF) of MS patients by high-throughput sequencing (HTS), a deep analysis on repertoire similarities and differences among compartments is still missing.

Methods: We performed comprehensive bioinformatics on high-dimensional TCR Vβ sequencing data from published and unpublished MS and healthy donors (HD) studies.

View Article and Find Full Text PDF

Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression.

View Article and Find Full Text PDF

Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the post-treatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naïve and memory CD4+ and CD8+) across 15 RRMS patients before and after two years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRß sequencing.

View Article and Find Full Text PDF

Background: Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1β, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits.

Methods: We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation.

View Article and Find Full Text PDF

In neuro Behçet disease with multiple sclerosis-like features, diagnosis could be challenging. Here, we studied the cerebrospinal fluid and serum inflammatory profile of 11 neuro Behçet and 21 relapsing-remitting multiple sclerosis patients. Between the soluble factors analyzed (MMP9, TNF , IL6, CXCL13, CXCL10, CXCL8, IFN , IL10, IL17, IL23, and others) we found MMP9 increased in neuro Behçet serum compared to multiple sclerosis and decreased in cerebrospinal fluid.

View Article and Find Full Text PDF

The complete repair of periodontal structures remains an exciting challenge that prompts researchers to develop new treatments to restore the periodontium. Recent research has suggested strontium ion to be an attractive candidate to improve osteogenic activity. In this study, we have isolated a clonal finite cell line derived from human periodontal ligament (PDL) in order to assess whether and in which way different doses of SrCl (from 0.

View Article and Find Full Text PDF

Multiple sclerosis is characterized by tissue atrophy involving the brain and the spinal cord, where reactive inflammation contributes to the neurodegenerative processes. Recently, the presence of synapse alterations induced by the inflammatory responses was suggested by experimental and clinical observations, in experimental autoimmune encephalomyelitis mouse model and in patients, respectively. Further knowledge on the interplay between pro-inflammatory agents, neuroglia and synaptic dysfunction is crucial to the design of unconventional protective molecules.

View Article and Find Full Text PDF

Progress in nanotechnology has determined new strategies concerning drug delivery into the central nervous system for the treatment of degenerative and inflammatory diseases. To date, brain targeting through systemic drug administration, even in a nano-composition, is often unsuccessful. Therefore, we investigated the possibility of loading T lymphocytes with PGLA-PEG COOH magnetite nanoparticles (30 nm), which can be built up to easily bind drugs and monoclonal antibodies, and to exploit the ability of activated T cells to cross the blood-brain barrier and infiltrate the brain parenchyma.

View Article and Find Full Text PDF

Purpose: GLP-1 receptor agonists are antidiabetic drugs currently used in the therapy of type 2 diabetes. Despite several in vitro and in vivo animal studies suggesting a beneficial effect of GLP-1 analogues on bone, in humans their skeletal effects are not clear and clinical studies report conflicting results.

Methods: We differentiated human mesenchymal stromal cells (hMSC) toward the adipogenic and the osteoblastic lineages, analysing the effect of Exendin-4 (EXE) before, during and after specific differentiations.

View Article and Find Full Text PDF

The current improvements in therapy against osteosarcoma (OS) have prolonged the lives of cancer patients, but the survival rate of five years remains poor when metastasis has occurred. The Cancer Stem Cell (CSC) theory holds that there is a subset of tumor cells within the tumor that have stem-like characteristics, including the capacity to maintain the tumor and to resist multidrug chemotherapy. Therefore, a better understanding of OS biology and pathogenesis is needed in order to advance the development of targeted therapies to eradicate this particular subset and to reduce morbidity and mortality among patients.

View Article and Find Full Text PDF

Osteosarcoma (OSA) is the most common primary malignant bone tumor, usually arising in the long bones of children and young adults. There are different subtypes of OSA, among which we find the conventional OS (also called medullary or central osteosarcoma) which has a high grade of malignancy and an incidence of 80%. There are different subtypes of high grade OS like chondroblastic, fibroblastic, osteoblastic, telangiectatic, and the small cell osteosarcoma (SCO).

View Article and Find Full Text PDF

Th17 cells have been casually associated to the pathogenesis of autoimmune disease. We have previously demonstrated that Rai/ShcC, a member of the Shc family of adaptor proteins, negatively regulates Th17 cell differentiation and lupus autoimmunity. In this study, we have investigated the pathogenic outcome of the Th17 bias associated with Rai deficiency on multiple sclerosis development, using the experimental autoimmune encephalomyelitis (EAE) mouse model.

View Article and Find Full Text PDF

Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0.

View Article and Find Full Text PDF

In the last years scientific progress in nanomaterials, where size and shape make the difference, has increased their utilization in medicine with the development of a promising new translational science: nanomedicine. Due to their surface and core biophysical properties, nanomaterials hold the promise for medical applications in central nervous system (CNS) diseases: inflammatory, degenerative and tumors. The present review is focused on nanomaterials at the neuro-immune interface, evaluating two aspects: the possible CNS inflammatory response induced by nanomaterials and the developments of nanomaterials to improve treatment and diagnosis of neuroinflammatory diseases, with a focus on multiple sclerosis (MS).

View Article and Find Full Text PDF

Objective: To confirm CXCL10 over production in bone marrow mesenchymal stem cells (MSCs) and circulating monocytes isolated from multiple sclerosis patients (MS) and identify predate cell molecular signature; to extend this analysis after autologous hematopoietic stem cell transplantation (AHSCT) to test if therapy has modifying effects on MSCs and circulating monocytes.

Methods: MSCs and monocytes were isolated from 19 MS patients who undergone AHSCT before and seven of them at least 3 years after transplant. CXCL10 production was detected after LPS/IFN-γ stimulation.

View Article and Find Full Text PDF

Nanomaterials interact with cells and modify their function and biology. Manufacturing this ability can provide tissue-engineering scaffolds with nanostructures able to influence tissue growth and performance. Carbon nanotube compatibility with biomolecules motivated ongoing interest in the development of biosensors and devices including such materials.

View Article and Find Full Text PDF

Dendritic cells and their precursors express PPAR-gamma, whose stimulation has inhibitory effects on the maturation and function of dendritic cells in vivo. Dendritic cells can differentiate in vitro from CD133+ progenitors; the influence of PPAR-gamma stimulation on this process is unknown. We have addressed the effect of PPAR-gamma agonist rosiglitazone, at a concentration as used in clinics, on the differentiation of dendritic cells from human CD133+ progenitors.

View Article and Find Full Text PDF

Background And Purpose: The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS).

View Article and Find Full Text PDF

Background: Pharmacological inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) are currently evaluated in clinical trials for various malignancies but, interestingly, also proved of remarkable efficacy in preclinical models of autoimmune disorders including experimental autoimmune encephalomyelitis (EAE).

Objectives: The objectives of the study were to determine molecular mechanisms underlying suppression of the encephalitogenic response by these drugs; likewise, whether clinically-relevant post-treatment paradigms with PARP-1 inhibitors could prevent EAE relapses.

Methods: Adopted both in vitro techniques (bone marrow-derived cultured DC) as well as in vivo models of chronic or relapsing-remitting (RR) EAE.

View Article and Find Full Text PDF

CD133 is a hallmark of primitive myeloid progenitors. We have addressed whether human cord blood cells selected for CD133 can generate dendritic cells, and Langerhans cells in particular, in conditions that promote that generation from CD34(+) progenitors. Transforming growth factor-β1 (TGF-β1) and anti-TGF-β1 antibody, respectively, were added in some experiments.

View Article and Find Full Text PDF

Immune synapse formation between dendritic cells (DCs) and T cells is one of the key events in immune reaction. In immunogenic synapses, the presence of fully mature DCs is mandatory; consequently, the modulation of DC maturation may promote tolerance and represents a valuable therapeutic approach in autoimmune diseases. In the field of cell therapy, bone marrow mesenchymal stem cells (MSCs) have been extensively studied for their immunoregulatory properties, such as inhibiting DC immunogenicity during in vitro differentiation and ameliorating in vivo models of autoimmune diseases (e.

View Article and Find Full Text PDF

Azathioprine (Aza), 6-Mercaptopurine (6-MP) and 6-Thioguanine (6-TG) are thiopurine drugs widely used as immunosuppressants/anti-inflammatory agents in organ transplantation and chemotherapy. Aza is well tolerated and effective in modifying the course of MS. Here we investigated the action of 6-MP on human dendritic cells (DCs).

View Article and Find Full Text PDF